Home Courses Contact About


1. ⇒  (MHT CET 2023 12th May Evening Shift )

The area (in sq. units) of the smaller part of the circle x 2 + y 2 = a 2 cut off by the line x = a 2 is

A. a 2 4 | π 2 1 |

B. a 2 | π 4 1 |

C. a 2 2 | π 2 1 |

D. a 2 4 | π 4 1 |

Correct Option is (C)

MHT CET 2023 12th May Evening Shift Mathematics - Area Under The Curves Question 2 English Explanation

Substitute x = a 2 in x 2 + y 2 = a 2 , we get a 2 2 + y 2 = a 2 y = ± a 2

Required area

= 2 a 2 a a 2 x 2 d x = 2 [ x 2 a 2 x 2 + a 2 2 sin 1 ( x a ) ] a 2 2 = 2 { [ 0 + a 2 2 × π 2 ] [ a 2 2 a 2 a 2 2 + a 2 2 × π 4 ] } = 2 [ a 2 π 4 a 2 4 a 2 π 8 ] = a 2 2 | π 1 π 2 | = a 2 2 | π 2 1 |

2. ⇒  (MHT CET 2023 12th May Morning Shift )

The area of the region bounded by the curves y = e x , y = log x and lines x = 1 , x = 2 is

A. ( e 1 ) 2 sq. units

B. ( e 2 e + 1 ) sq. units

C. ( e 2 e + 1 2 log 2 ) sq. units

D. ( e 2 + e 2 log 2 ) sq. units

Correct Option is (C)

Required Area

= 1 2 ( e x log x ) d x = [ e x ] 1 2 1 2 1 log x   d x = ( e 2 e ) [ x log x 1 2 1   d x ] = ( e 2 e ) [ x log x x ] 1 2 = ( e 2 e ) [ ( 2 log 2 2 ) ( 1 log 1 1 ) ] = e 2 e ( 2 log 2 2 0 + 1 ) = e 2 e ( 2 log 2 1 ) = ( e 2 e + 1 2 log 2 )  sq. units 

3. ⇒  (MHT CET 2023 11th May Morning Shift )

The area of the region bounded by the parabola y = x 2 and the curve y = | x | is

A. 1 2 sq. units

B. 1 3 sq. units

C. 1 4 sq. units

D. 1 6 sq. units

Correct Option is (B)

MHT CET 2023 11th May Morning Shift Mathematics - Area Under The Curves Question 4 English Explanation

 Required area  = 2 0 1 ( x x 2 ) d x = 2 [ x 2 2 x 3 3 ] 0 1 = 2 ( 1 2 1 3 ) = 1 3  sq.units 

4. ⇒  (MHT CET 2023 9th May Morning Shift )

The area (in sq. units) of the region A = { ( x , y ) / y 2 2 x y + 4 } is

A. 30

B. 53 3

C. 16

D. 18

Correct Option is (D)

Given that y 2 2 x y + 4

x = y 2 2  and  x = y + 4 y 2 2 = y + 4 2 y 2 2 y 8 = 0 y = 4  or  2 x = 8  or  2

MHT CET 2023 9th May Morning Shift Mathematics - Area Under The Curves Question 8 English Explanation

A = 2 4 ( y + 4 y 2 2 ) d y

A = [ y 2 2 + 4 y y 3 6 ] 2 4 A = ( 8 + 16 64 6 ) ( 2 8 + 8 6 ) A = 18

5. ⇒  (MHT CET 2021 21th September Morning Shift )

The area of the region bounded by the curve y 2 = 4x and the line y = x is

A. 8 3 sq. units

B. 5 8 sq. units

C. 3 8 sq. units

D. 3 5 sq. units

Correct Option is (A)

MHT CET 2021 21th September Morning Shift Mathematics - Area Under The Curves Question 11 English Explanation

Refer figure. Point of intersection of given curves x 2 = 4 x x ( x 4 ) = 0

0 ( 0 , 0 )  and  P ( 4 , 4 )

Required area is shaded.

A = 0 4 ( 4 x x ) d x = 2 0 4 x 1 2 d x θ 4 x d x = 2 [ x 3 2 ( 3 2 ) ] 0 4 [ x 2 2 ] 0 4 = ( 4 3 ) ( 4 × 2 ) 16 2 = 32 3 16 2 = 16 6 = 8 3  sq. units.