Home Courses Contact About


6. ⇒  (MHT CET 2023 10th May Morning Shift )

The vertices of the feasible region for the constraints x + y 4 , x 2 , y 1 , x + y 1 , x , y 0 are

A. ( 1 , 0 ) , ( 2 , 0 ) , ( 2 , 1 ) , ( 0 , 4 )

B. ( 0 , 1 ) , ( 4 , 0 ) , ( 0 , 4 ) , ( 1 , 0 )

C. ( 1 , 0 ) , ( 2 , 0 ) , ( 2 , 1 ) , ( 0 , 1 )

D. ( 1 , 0 ) , ( 4 , 0 ) , ( 2 , 1 ) , ( 0 , 4 )

Correct answer option is (C)

Feasible region lies on origin side of x + y = 4 , x = 2 , y = 1 and non-origin side of x + y = 1 and in first quadrant.

Vertices of feasible region are A ( 1 , 0 ) , B ( 2 , 0 ) , C ( 2 , 1 ) , D ( 0 , 1 )

MHT CET 2023 10th May Morning Shift Mathematics - Linear Programming Question 4 English Explanation

7. ⇒  (MHT CET 2023 9th May Evening Shift )

The graphical solution set for the system of inequations x 2 y 2 , 5 x + 2 y 10 , 4 x + 5 y 20 , x 0 , y 0 is given by

MHT CET 2023 9th May Evening Shift Mathematics - Linear Programming Question 7 English

A. Fig. 2

B. Fig. 4

C. Fig. 1

D. Fig. 3

Correct answer option is (D)

Feasible region lies on origin side of x 2 y = 2 , 4 x + 5 y = 20 and on non-origin side of 5 x + 2 y = 10 , in 1 st  quadrant.

MHT CET 2023 9th May Evening Shift Mathematics - Linear Programming Question 7 English Explanation

8. ⇒  (MHT CET 2023 9th May Morning Shift )

If feasible region is as shown in the figure, then the related inequalities are

MHT CET 2023 9th May Morning Shift Mathematics - Linear Programming Question 8 English

A. 3 x + 4 y 12 , y x 0 , y 3 , x , y 0

B. 3 x + 4 y 12 , y x 0 , y 3 , x , y 0

C. 3 x + 4 y 12 , y x 0 , y 3 , x , y 0

D. 3 x + 4 y 12 , y x 0 , y 3 , x , y 0

Correct answer option is (A)

The shaded region lies:

on non-origin side of line 3 x + 4 y = 12 i.e., 3 x + 4 y 12 ,

on the side of the line y x = 0 , where y x i.e., y x 0 ,

on origin side of line y = 3 i.e., y 3 ,

and in first quadrant i.e., x 0 , y 0 .

9. ⇒  (MHT CET 2021 21th September Evening Shift )

The objective function z = 4 x + 5 y subjective to 2 x + y 7 ; 2 x + 3 y 15 ; y 3 , x 0 ; y 0 has minimum value at the point.

A. on the line 2 x + 3 y = 15

B. on X-axis

C. on Y-axis

D. origin

Correct answer option is (B)

MHT CET 2021 21th September Evening Shift Mathematics - Linear Programming Question 9 English Explanation

We have lines 2 x + y = 7 , 2 x + 3 y = 15 , y = 3 Refer figure

The required region is shaded.

We have A ( 7 2 , 0 ) , B ( 15 2 , 0 )

Point of intersection of 2 x + y = 7 and y = 3  is  D ( 2 , 3 )

Point of intersection of 2 x + 3 y = 15 and y = 3 is C ( 3 , 3 ) We have objective function z = 4 x + 5 y

z ( A ) = 4 ( 7 2 ) + 5 ( 0 ) = 14 + 0 = 14 z ( B ) = 4 ( 15 2 ) + 5 ( 0 ) = 30 + 0 = 30 z ( C ) = 4 ( 3 ) + 5 ( 3 ) = 12 + 15 = 27 z ( D ) = 4 ( 2 ) + 5 ( 3 ) = 8 + 15 = 23

Hence minimum value occurs at point A which lies on X axis.

10. ⇒  (MHT CET 2021 21th September Morning Shift )

The shaded figure given below is the solution set for the linear inequations. Choose the correct option.

MHT CET 2021 21th September Morning Shift Mathematics - Linear Programming Question 10 English

A. 3 x + 4 y 18 ; x 6 y 3 ; 2 x + 3 y 3 ; 7 x 14 y 14 ; x 0 ; y 0

B. 3 x + 4 y 18 ; x 6 y 3 ; 2 x + 3 y 3 ; 7 x + 14 y 14 ; x 0 ; y 0

C. 3 x + 4 y 18 ; x 6 y 3 ; 2 x + 3 y 3 ; 7 x + 14 y 14 ; x 0 ; y 0

D. 3 x + 4 y 18 ; x 6 y 3 ; 2 x + 3 y 3 ; 7 x + 14 y 14 ; x 0 ; y 0

Correct answer option is (C)

For the shaded region, inequalities are as follows.

x 0 , y 0 , 2 x + 3 y 3 , x 6 y 3 , 3 x + 4 y 18 , 7 x + 14 y 14 .

Note:

7 x + 14 y = 14 7 x 14 = 14  and  0 > 14