Home Courses Contact About


1. ⇒  (MHT CET 2023 12th May Evening Shift )

The value of 0 π | sin x 2 x π | d x is

A. π 4

B. π 2

C. π

D. 2 π

Correct Option is (B)

0 π | sin x 2 x π | d x = 0 π 2 ( sin x 2 x π ) d x + π 2 π ( 2 x π sin x ) d x = [ cos x ] 0 π 2 [ x 2 π ] 0 π 2 + [ x 2 π ] π 2 π + [ cos x ] π 2 π = ( 0 + 1 ) ( π 4 0 ) + ( π π 4 ) + ( 1 0 ) = π 2

2. ⇒  (MHT CET 2023 12th May Morning Shift )

0 4 | 2 x 5 | d x =

A. 13 2

B. 15 2

C. 17 4

D. 17 2

Correct Option is (D)

0 4 | 2 x 5 | d x = 0 5 2 ( 5 2 x ) d x + 5 2 4 ( 2 x 5 ) d x = [ 5 x x 2 ] 0 5 2 + [ x 2 5 x ] 5 2 4 = 25 4 + 9 4 = 34 4 = 17 2

3. ⇒  (MHT CET 2023 11th May Evening Shift )

Let f : [ 1 , 2 ] [ 0 , ) be a continuous function such that f ( x ) = f ( 1 x ) , x [ 1 , 2 ]

Let R 1 = 1 2 x f ( x ) d x and R 2 be the area of the region bounded by y = f ( x ) , x = 1 , x = 2 and the X -axis, then R 2 is

A. 1 2 R 1

B. 2 R 1

C. 3 R 1

D. 1 3 R 1

Correct Option is (B)

Given that f ( x ) = f ( 1 x ) and R 1 = 1 2 x f ( x ) d x

R 1 = 1 2 ( 1 x ) f ( 1 x ) d x [ a b f ( x ) d x = a b f ( a + b x ) d x ] R 1 = 1 2 f ( x ) d x 1 2 x f ( x ) d x [ f ( x ) = f ( 1 x ) ] R 1 = 1 2 f ( x ) d x R 1 2 R 1 = 1 2 f ( x ) d x

Note that R 2 = 1 2 f ( x ) d x = 2 R 1

4. ⇒  (MHT CET 2023 11th May Morning Shift )

Let f ( x ) be positive for all real x . If I 1 = 1 h h x f ( x ( 1 x ) ) d x and I 2 = 1 h h f ( x ( 1 x ) ) d x , where ( 2 h 1 ) > 0 , then I 1 I 2 is

A. 2

B. h

C. 1 2

D. 1

Correct Option is (C)

I 1 = 1 h h x f ( x ( 1 x ) ) d x  and  . . . (i) I 2 = 1 h h f ( x ( 1 x ) ) d x . . . (ii) I 1 = 1 h h ( 1 x ) f [ ( 1 x ) ( 1 1 + x ) ] d x [ a b f ( x ) d x = a b f ( a + b x ) d x ]

I 1 = 1 h h ( 1 x ) f ( x ( 1 x ) ) d x = 1 h h f ( x ( 1 x ) ) d x 1 h h x f ( x ( 1 x ) ) d x I 1 = I 2 I 1 ....[From (i) and (ii)] 2 I 1 = I 2 I 1 I 2 = 1 2

5. ⇒  (MHT CET 2023 10th May Evening Shift )

Let f : R R and g : R R be continuous functions. Then the value of the integral π 2 π 2 [ f ( x ) + f ( x ) ] [ g ( x ) g ( x ) ] d x is

A. π

B. 1

C. 1

D. 0

Correct Option is (D)

Let h ( x ) = [ f ( x ) + f ( x ) ] [ g ( x ) g ( x ) ]

h ( x ) = [ f ( x ) + f ( x ) ] [ g ( x ) g ( x ) ] = [ f ( x ) + f ( x ) ] [ g ( x ) g ( x ) ] = h ( x )

h ( x ) is an odd function.

π 2 π 2   h ( x ) = 0