Home Courses Contact About


1. ⇒  (MHT CET 2023 11th May Morning Shift )

0 π d x 4 + 3 cos x =

A. 2 π 7

B. π 7

C. π 2 7

D. π 7

Correct Option is (B)

Let I = 0 π d x 4 + 3 cos x

Put tan x 2 = t

d x = 2 dt 1 + t 2 and cos x = 1 t 2 1 + t 2

I = 0 π d x 4 + 3 cos x = 0 2 dt 7 + t 2 = [ 2 7 tan 1 ( t 7 ) ] 0 = 2 7 [ tan 1 0 ] = 2 7 π 2 = π 7

2. ⇒  (MHT CET 2023 11th May Morning Shift )

Let f ( x ) = x ( 1 + x ) 2   d x , x 0 , then f ( 3 ) f ( 1 ) is equal to

A. π 6 + 1 2 + 3 4

B. π 12 + 1 2 + 3 4

C. π 6 + 1 2 3 4

D. π 12 + 1 2 3 4

Correct Option is (D)

f ( x ) = x ( 1 + x ) 2   d x , x 0

f ( 3 ) f ( 1 ) = 1 3 x ( 1 + x ) 2   d x = I (say)

Put x = tan θ d x = 2 tan θ sec 2 θ d θ

When x = 1 , θ = π 4 and when x = 3 , θ = π 3

I = π 4 π 3 2 tan 2 θ sec 2 θ ( 1 + tan 2 θ ) 2 d θ = π 4 π 3 2 tan 2 θ 1 + tan 2 θ d θ = π 4 π 3 2 sin 2 θ sin 2 θ + cos 2 θ d θ = π 4 π 3 ( 1 cos 2 θ ) d θ = [ θ sin 2 θ 2 ] π 4 π 3

= ( π 3 π 4 ) 1 2 ( 3 2 1 ) = π 12 3 4 + 1 2

3. ⇒  (MHT CET 2023 11th May Morning Shift )

1 3 ( cot 1 ( x x 2 + 1 ) + cot 1 ( x 2 + 1 x ) ) d x =

A. ( π 4 )

B. π

C. ( π 2 )

D. ( 2 π )

Correct Option is (D)

 Let  I = 1 3 ( cot 1 ( x x 2 + 1 ) + cot 1 ( x 2 + 1 x ) ) d x = 1 3 ( tan 1 ( x 2 + 1 x ) + cot 1 ( x 2 + 1 x ) ) d x [ cot 1 ( x ) = tan 1 ( 1 x ) ]

= 1 3 π 2   d x [ tan 1 x + cot 1 x = π 2 ] = π 2 [ x ] 1 3 = π 2 ( 4 ) I = 2 π

4. ⇒  (MHT CET 2023 10th May Evening Shift )

0 1 cos 1 x d x =

A. 1

B. 0

C. 1

D. 2

Correct Option is (C)

 Let  I = 0 1 ( cos 1 x ) ( 1 ) d x = [ cos 1 x x ( 1 1 x 2 x ) d x ] 0 1 = [ x cos 1 x + x 1 x 2   d x ] 0 1 = [ x cos 1 x 1 x 2 ] 0 1 = [ 1 cos 1 ( 1 ) 1 ( 1 ) 2 ] [ 0 cos 1 ( 0 ) 1 0 2 ] = 0 ( 1 ) = 1

5. ⇒  (MHT CET 2023 10th May Morning Shift )

If 0 1 2 x 2 ( 1 x 2 ) 3 2   d x = k 6 , then the value of k is

A. 2 3 π

B. 2 3 + π

C. 3 2 + π

D. 3 2 π

Correct Option is (A)

 Let  I = 0 1 2 x 2 ( 1 x 2 ) 3 2   d x  Put  x = sin θ

d x = cos θ d θ ( 1 x 2 ) 3 2 = ( 1 sin 2 θ ) 3 2 = ( cos 2 θ ) 3 2 = cos 3 θ I = 0 π 6 sin 2 θ cos θ d θ cos 3 θ = 0 π 6 tan 2 θ d θ = 0 π 6 ( sec 2 θ 1 ) d θ = [ tan θ ] 0 π 6 [ θ ] 0 π 6 = ( tan π 6 tan 0 ) ( π 6 0 ) = 1 3 π 6

= 3 3 π 6 = 2 3 π 6

But, 0 1 2 x 2 ( 1 x 2 ) 3 2   d x = k 6 ...... [Given]

k = 2 3 π