Home Courses Contact About


1. ⇒  (MHT CET 2023 9th May Evening Shift )

The differential equation of all circles which pass through the origin and whose centres lie on Y -axis is

A. ( x 2 y 2 ) d y   d x 2 x y = 0

B. ( x 2 y 2 ) d y   d x + 2 x y = 0

C. ( x 2 y 2 ) d y   d x + x y = 0

D. ( x 2 y 2 ) d y   d x x y = 0

Correct Option is (A)

Circle passes through origin and centre lie on Y-axis.

Let ( 0 , k ) be centre and ' k ' be radius

Equation of circle is

( x 0 ) 2 + ( y k ) 2 = k 2 x 2 + y 2 2 y k + k 2 = k 2 x 2 + y 2 2 k y = 0 x 2 + y 2 = 2 k y .... (i) x 2 + y 2 2 y = k .... (ii)

Differentiating equation (i) with respect to x , we get

2 x + 2 y d y   d x = 2 k d y   d x 2 x + 2 y d y   d x 2 k d y   d x = 0 2 x + 2 ( y k ) d y   d x = 0 2 x + 2 [ y ( x 2 + y 2 2 y ) ] d y   d x = 0 ...[From (ii)] 2 x + 2 [ 2 y 2 x 2 y 2 2 y ] d y   d x = 0 2 x + ( y 2 x 2 y ) d y   d x = 0 2 x y + ( y 2 x 2 ) d y   d x = 0  i.e.  ( x 2 y 2 ) d y   d x 2 x y = 0

2. ⇒  (MHT CET 2023 9th May Morning Shift )

The differential equation of all parabolas, whose axes are parallel to Y -axis, is

A. y 3 = 1

B. y 3 = 0

C. y 3 = 1

D. y y 3 + y 1 = 0

Correct Option is (C)

Parabola whose axes are parallel to Y -axis. Vertex is not ( 0 , 0 )

Equation becomes

( x h ) 2 = 4   b ( y k )

Differentiating w.r.t. x , we get

2 ( x h ) = 4 b ( d y d x )

Again differentiating w.r.t. x , we get

2 = 4 b ( d 2 y d x 2 )

Again differentiating w.r.t. x , we get

0 = 4 b ( d 3 y d x 3 ) d 3 y d x 3 = 0  i.e.,  y 3 = 0

3. ⇒  (MHT CET 2021 21th September Evening Shift )

The differential equation of the family of circles touching y -axis at the origin is

A. x 2 y 2 2 x y d y d x = 0

B. x 2 y 2 + 2 x y d y d x = 0

C. x 2 + y 2 2 x y d y d x = 0

D. x 2 + y 2 + 2 x y d y d x = 0

Correct Option is (B)

Since circles touch Y axis at origin, the centres of the circles lie on X axis.

Let centre be ( h , 0 ) and radius = h .

( x h ) 2 + ( y 0 ) 2 = h 2 x 2 2 hx + y 2 = 0 ..... (1)

Differentiating w.r.t. x , we get

2 x 2 h + 2 y d y d x = 0 x + y d y d x = h

Substituting value of h in eq. (1), we get

x 2 2 ( x + y d y d x ) x + y 2 = 0 x 2 2 x 2 2 x y d y d x + y 2 = 0 x 2 y 2 + 2 x y d y d x = 0

4. ⇒  (MHT CET 2021 21th September Morning Shift )

The differential equation of family of circles whose centres lie on X -axis is

A. d 2 y d x 2 + ( d y d x ) 2 + 1 = 0

B. y ( d 2 y d x 2 ) + ( d y d x ) 2 + 1 = 0

C. y ( d 2 y d x 2 ) ( d y d x ) 2 1 = 0

D. y ( d 2 y d x 2 ) + ( d y d x ) 2 1 = 0

Correct Option is (B)

Let ( h , 0 ) be the centre of the circle and ' r ' be the radius.

Let ( h , h h ) 2 + ( y 0 ) 2 = r 2 ( x h ) 2 + y 2 = r 2 ....... (1)

Differentiating w.r.t. x , we get

2 ( x h ) ( 1 ) + 2 y d y d x = 0 h = x + y d y d x

Substituting value of ' h ' in eq. (i), we get

y 2 ( d y d x ) 2 + y 2 = r 2 y 2 [ 1 + ( d y d x ) 2 ] = r 2

Differentiating w.r.t. x , we get

y 2 ( 2 d y d x d 2 y d x 2 ) + [ 1 + ( d y d x ) 2 ] ( 2 y ) d y d x = 0 y d 2 y d x 2 + ( d y d x ) 2 + 1 = 0

5. ⇒  (MHT CET 2021 20th September Evening Shift )

The differential equation of an ellipse whose major axis is twice its minor axis, is

A. x + 4 y d y d x = 0

B. x 4 y d y d x = 0

C. x + 2 y d y d x = 0

D. None of these

Correct Option is (A)

For the given ellipse, we have a = 2 b

x 2 4 b 2 + y 2 b 2 = 1 x 2 + 4 y 2 = 4 b 2

Differentiating both sides w.r.t. x , we get

2 x + 8 y d y d x = 0 x + 4 y d y d x = 0