Home Courses Contact About


1. ⇒  (MHT CET 2023 12th May Morning Shift )

The differential equation cos ( x + y ) d y = d x has the general solution given by

A. y = sin ( x + y ) + c , where c is a constant.

B. y = tan ( x + y ) + c , where c is a constant

C. y = tan ( x + y 2 ) + c , where c is a constant

D. y = 1 2 tan ( x + y ) + c , where c is a constant

Correct Option is (C)

cos ( x + y ) d y = d x d x   d y = cos ( x + y ) ..... (i)

Put x + y = u .... (ii)

Differentiating w.r.t. y , we get

d x   d y + 1 = du d y

d x   d y = du d y 1 ..... (iii)

Substituting (ii) and (iii) in (i), we get

du d y 1 = cos u du 1 + cosu = d y du 2 cos 2 ( u 2 ) = d y

Integrating on both sides, we get

1 2 sec 2 ( u 2 ) du = d y y = tan ( x + y 2 ) + c

2. ⇒  (MHT CET 2023 11th May Evening Shift )

The solution of d x   d y + x y = x 2 is

A. 1 y = c x x log x , where c is a constant of integration.

B. 1 x = c y y log y , where c is a constant of integration.

C. 1 x = c x x log y , where c is a constant of integration.

D. 1 y = c x y log x , where c is a constant of integration.

Correct Option is (B)

d x   d y + x y = x 2 1 x 2 d x   d y + 1 x y = 1 .... (i)

Let 1 x = t

Differentiating w.r.t. y , we get

1 x 2 d x   d y = dt d y 1 x 2 d x   d y = dt d y  (i)  dt d y + t y = 1 dt d y t y = 1  I.F.  = e 1 y   d y = e log ( 1 y ) = 1 y

The solution of the given equation is

t (  I.F  ) = ( 1 ) (  I.F.  ) d y + c t ( 1 y ) = 1 y   d y + c

t y = log y + c 1 x y = log y + c 1 x = c y y log y

3. ⇒  (MHT CET 2023 11th May Morning Shift )

A curve passes through the point ( 1 , π 6 ) . Let the slope of the curve at each point ( x , y ) be y x + sec ( y x ) , x > 0 , then, the equation of the curve is

A. sin ( y x ) = log ( x ) + 1 2

B. cosec ( y x ) = log ( x ) + 2

C. sec ( 2 y x ) = log ( x ) + 2

D. cos ( 2 y x ) = log ( x ) + 1 2

Correct Option is (A)

d y   d x = y x + sec ( y x ) .... (i)  Put  y = v x d y   d x = v + x dv d x v + x dv d x = v + sec v ... [From (i)] cos v d v = 1 x   d x

Integrating both sides, we get

sin v = log ( x ) + c sin ( y x ) = log ( x ) + c .... (ii)

The curve passes through ( 1 , π 6 ) .

sin ( π 6 ) = log ( 1 ) + c c = 1 2

Equation (ii) becomes

sin ( y x ) = log ( x ) + 1 2

4. ⇒  (MHT CET 2021 21th September Evening Shift )

The general solution of the differential equation. ( y x ) cos ( y x ) d x [ ( x y ) sin ( y x ) + cos ( y x ) ] d y = 0 is

A. y 2 sin ( y x ) = k

B. x sin ( y x ) = k

C. sin ( y x ) = k

D. y sin ( y x ) = k

Correct Option is (D)

We have ( y x ) cos ( y x ) d x [ ( x y ) sin ( y x ) + cos ( y x ) ] d y = 0

d y d x = ( y x ) cos ( y x ) ( x y ) sin ( y x ) + cos ( y x ) Put y x = v y = v x d y d x = v + x d v d x v + x d v d x = v cos v 1 v sin v + cos v = v 2 cos v sin v + v cos v x d v d x = v sin v sin v + v cos v sin v + v cos v v sin v d v = d x x 1 v d v + cot v d v = d x x log | v | + log | sin x | = log | x | + log k log | ( v ) ( sin v ) ( x ) | = log k y sin ( y x ) = k

5. ⇒  (MHT CET 2021 21th September Morning Shift )

The general solution of the differential equation ( 3 x y + y 2 ) d x + ( x 2 + x y ) d y = 0 is

A. x 2 ( 2 x y y 2 ) = c

B. x 2 ( y 2 2 x y ) = c

C. x ( 2 x y + y 2 ) = c

D. x 2 ( 2 x y + y 2 ) = c

Correct Option is (D)

( 3 x y + y 2 ) d x + ( x 2 + x y ) d y = 0 d y d x = ( 3 x y + y 2 ) ( x 2 + x y )

Put y = v x d y d x = v + x d v d x

v + x d v d x = ( 3 v x 2 + v 2 x 2 ) ( x 2 + v 2 ) = 3 v + v 2 1 + v x d v d x = 3 v + v 2 1 + v v = ( 2 v 2 + 4 v ) 1 + v 1 + v ( 2 v 2 + 4 v ) d v = 1 x d x 1 2 v + 1 v 2 + 2 v d v = d x x 1 4 2 ( v + 1 ) v 2 + 2 v d v = log x + log c 1 1 4 log ( v 2 + 2 v ) + log x = log c 1 1 4 log ( y 2 x 2 + 2 y x ) + log x = log c 1

1 4 log ( y 2 + 2 x y x 2 ) + log x = log c 1 log ( y 2 + 2 x y x 2 ) + log x 4 = 4 log c 1 log [ ( y 2 + 2 x y x 2 ) ( x 4 ) ] = log c 1 4 log [ x 2 ( y 2 + 2 x y ) ] = log c 1 4 x 2 ( y 2 + 2 x y ) = c