Home Courses Contact About


1. ⇒  (MHT CET 2023 12th May Evening Shift )

If A = [ 2 a 3 b 3 2 ] and A adj A = A A T , then 2 a + 3 b is

A. -1

B. 1

C. 5

D. -5

Correct answer option is (C)

A = [ 2 a 3 b 3 2 ] A adj A = [ 2 a 3 b 3 2 ] [ 2 3 b 3 2 a ] = [ 4 a + 9 b 0 0 9 b + 4 a ] A A T = [ 2 a 3 b 3 2 ] [ 2 a 3 3 b 2 ] = [ 4 a 2 + 9 b 2 6 a 6 b 6 a 6 b 13 ] A adj A = A A T [ 4 a + 9 b 0 0 4 a + 9 b ] = [ 4 a 2 + 9 b 2 6 a 6 b ] a = b  and  4 a + 9 b = 13 a = b = 1 2 a + 3 b = 5

2. ⇒  (MHT CET 2023 11th May Morning Shift )

If P = [ 1 α 3 1 3 3 2 4 4 ] is the adjoint of a 3 × 3 matrix A and | A | = 4 , then value of α is

A. 4

B. 11

C. 5

D. 0

Correct answer option is (B)

P = adj A .... [Given] | P | = | A | 2 . . . . [ | adjA | = | A | n 1 ] | 1 α 3 1 3 3 2 4 4 | = 4 2 2 α 6 = 16 α = 11

3. ⇒  (MHT CET 2023 10th May Evening Shift )

If B = [ 3 α 1 1 3 1 1 1 3 ] is the adjoint of a 3 × 3 matrix A and | A | = 4 , then α is equal to

A. 1

B. 0

C. -1

D. -2

Correct answer option is (A)

 Using  | adj A | = | A | n 1 B u t B = Adj ( A ) . . . . [ Given ] | B | = | A | 2 | 3 α 1 1 3 1 1 1 3 | = | A | 2 24 4 α 4 = 4 2 20 4 α = 16 α = 1

4. ⇒  (MHT CET 2023 10th May Morning Shift )

If B = [ 1 α 2 1 2 2 2 3 3 ] is the adjoint of a 3 × 3 matrix A and | A | = 5 , then α is equal to

A. 25

B. 27

C. 3 3

D. 5

Correct answer option is (B)

Using | Adj A | = | A | n 1

But B = Adj ( A ) .... [Given]

| B | = | A | 2

| 1 α 2 1 2 2 2 3 3 | = | A | 2 α 2 = 5 2 α 2 = 25 α = 27

5. ⇒  (MHT CET 2023 9th May Evening Shift )

If | cos ( A + B ) sin ( A + B ) cos ( 2 B ) sin A cos A sin B cos A sin A cos B | = 0 , then the value of B is

A. n π , n Z

B. ( 2 n + 1 ) π 2 , n Z

C. ( 2 n + 1 ) π 4 , n Z

D. 2 n π 3 , n Z

Correct answer option is (B)

| cos ( A + B ) sin ( A + B ) cos ( 2 B ) sin A cos A sin B cos A sin A cos B | = 0

cos ( A + B ) [ ( cos A cos B sin A sin B ) ] + sin ( A + B ) [ sin A cos B + sin B cos A ] + cos 2 B [ sin 2 A + cos 2 A ] = 0

cos ( A + B ) cos ( A + B ) + sin ( A + B ) sin ( A + B ) + cos 2   B = 0 cos 2 (   A + B ) + sin 2 (   A + B ) + cos 2   B = 0 1 + cos 2   B = 0

2 cos 2   B = 0 cos B = 0

B = ( 2 n + 1 ) π 2  for  ( n Z )