Home Courses Contact About


1. ⇒  (MHT CET 2023 12th May Morning Shift )

The solution set of 8 cos 2 θ + 14 cos θ + 5 = 0 , in the interval [ 0 , 2 π ] , is

A. { π 3 , 2 π 3 }

B. { π 3 , 4 π 3 }

C. { 2 π 3 , 4 π 3 }

D. { 2 π 3 , 5 π 3 }

Correct answer option is (C)

8 cos 2 θ + 14 cos θ + 5 = 0 8 cos 2 θ + 10 cos θ + 4 cos θ + 5 = 0 2 cos θ ( 4 cos θ + 5 ) + 1 ( 4 cos θ + 5 ) = 0 ( 2 cos θ + 1 ) ( 4 cos θ + 5 ) = 0 cos θ = 1 2  or  cos θ = 5 4

But cos θ = 5 4 is not possible as cos θ [ 1 , 1 ] for all values of θ .

cos θ = 1 2 θ { 2 π 3 , 4 π 3 }

2. ⇒  (MHT CET 2023 12th May Morning Shift )

If general solution of cos 2 θ 2 sin θ + 1 4 = 0 is θ = n π A + ( 1 ) n π B , n Z , then A + B has the

A. 7

B. 6

C. 1

D. -7

Correct answer option is (A)

cos 2 θ 2 sin θ + 1 4 = 0 ( 1 sin 2 θ ) 2 sin θ + 1 4 = 0 sin 2 θ + 2 sin θ 5 4 = 0 4 sin 2 θ + 8 sin θ 5 = 0 4 sin 2 θ + 10 sin θ 2 sin θ 5 = 0 2 sin θ ( 2 sin θ + 5 ) 1 ( 2 sin θ + 5 ) = 0 ( 2 sin θ 1 ) ( 2 sin θ + 5 ) = 0 sin θ = 1 2  or  sin θ = 5 2

But sin θ = 5 2 is not possible as sin θ [ 1 , 1 ] for all values of θ .

sin θ = 1 2 sin θ = sin π 6 θ = n π 1 + ( 1 ) n π 6 A = 1  and  B = 6 A + B = 7

3. ⇒  (MHT CET 2023 11th May Evening Shift )

If cos x + cos y cos ( x + y ) = 3 2 , then

A. x + y = 0

B. x = 2 y

C. x = y

D. 2 x = y

Correct answer option is (C)

cos x + cos y cos ( x + y ) = 3 2 2 cos ( x + y 2 ) cos ( x y 2 ) ( 2 cos 2 ( x + y 2 ) 1 ) = 3 2 [ cos α + cos β = 2 cos ( α + β 2 ) cos ( α β 2 )  and  cos θ = 2 cos 2 ( θ 2 ) 1 ] 2 cos ( x + y 2 ) cos ( x y 2 ) 2 cos 2 ( x + y 2 ) = 3 2 1 2 cos ( x + y 2 ) cos ( x y 2 ) 2 cos 2 ( x + y 2 ) = 1 2 4 cos 2 ( x + y 2 ) 4 cos ( x + y 2 ) cos ( x y 2 ) + 1 = 0

Substituting cos ( x + y 2 ) = t , we get

4 t 2 4 t cos ( x y 2 ) + 1 = 0

As t is real, we get b 2 4 a c 0

[ 4 cos ( x y 2 ) ] 2 4 × 4 × 1 0 16 cos 2 ( x y 2 ) 16 0 cos 2 ( x y 2 ) 1 cos 2 ( x y 2 ) = 1 . . . [ 1 cos θ 1 , for all values of   θ ] x y 2 = 0 x = y

4. ⇒  (MHT CET 2023 11th May Evening Shift )

If the general solution of the equation tan 3 x 1 tan 3 x + 1 = 3 is x = n π p + 7 π q , n , p , q , Z , then p q is

A. 12

B. 1 12

C. 3

D. 36

Correct answer option is (B)

tan 3 x 1 tan 3 x + 1 = 3 tan 3 x tan π 4 1 + ( tan 3 x ) ( tan π 4 ) = 3 tan ( 3 x π 4 ) = tan ( π 3 ) 3 x π 4 = n π + π 3

3 x = n π + π 3 + π 4 3 x = n π + 7 π 12 x = n π 3 + 7 π 36

Comparing with n π p + 7 π q , we get

p = 3 , q = 36 p q = 3 36 = 1 12

5. ⇒  (MHT CET 2023 10th May Morning Shift )

The number of possible solutions of sin θ + sin 4 θ + sin 7 θ = 0 , θ ( 0 , π ) are

A. 3

B. 4

C. 6

D. 8

Correct answer option is (C)

sin 7 θ + sin θ + sin 4 θ = 0 2 sin 4 θ cos 3 θ + sin 4 θ = 0 sin 4 θ ( 2 cos 3 θ + 1 ) = 0 sin 4 θ = 0  or  cos 3 θ = 1 2 sin 4 θ = 0  or  cos 3 θ = cos ( 2 π 3 ) 4 θ = n π  or  3 θ = 2 n π ± 2 π 3 θ = n π 4  or  θ = 2 n π 3 ± 2 π 9 θ = 2 π 9 , π 4 , 4 π 9 , π 2 , 3 π 4 , 8 π 9 [ θ ( 0 , π ) ]  Number of solutions  = 6