Home Courses Contact About


1. ⇒  (MHT CET 2023 12th May Evening Shift )

The value of x , for which sin ( cot 1 ( x ) ) = cos ( tan 1 ( 1 + x ) ) , is

A. 0

B. 1

C. 1 2

D. 1 2

Correct answer option is (C)

Note that cot 1 x = sin 1 ( 1 1 + x 2 ) and

tan 1 ( 1 + x ) = cos 1 ( 1 1 + ( 1 + x ) 2 ) sin ( cot 1 ( x ) ) = cos ( tan 1 ( 1 + x ) ) sin ( sin 1 ( 1 1 + x 2 ) ) = cos ( cos 1 ( 1 1 + ( 1 + x ) 2 ) ) 1 1 + x 2 = 1 1 + ( 1 + x ) 2 1 + ( 1 + x ) 2 = 1 + x 2 x = 1 2

2. ⇒  (MHT CET 2023 12th May Evening Shift )

If tan 1 ( 1 x 1 + x ) = 1 2 tan 1 x , then x is

A. 1

B. 3

C. 1 3

D. 1 2 3

Correct answer option is (C)

tan 1 ( 1 x 1 + x ) = 1 2 tan 1 x tan 1 ( 1 ) tan 1 ( x ) = 1 2 tan 1 x π 4 = 3 2 tan 1 x x = tan ( π 6 ) = 1 3

3. ⇒  (MHT CET 2023 12th May Morning Shift )

If x = cosec ( tan 1 ( cos ( cot 1 ( sec ( sin 1 a ) ) ) ) ) , a [ 0 , 1 ]

A. x 2 a 2 = 3

B. x 2 + a 2 = 3

C. x 2 a 2 = 2

D. x 2 + a 2 = 2

Correct answer option is (B)

x = cosec ( tan 1 ( cos ( cot 1 ( sec ( sin 1 a ) ) ) ) ) = cosec ( tan 1 ( cos ( cot 1 ( sec ( sec 1 1 1 a 2 ) ) ) ) ) = cosec ( tan 1 ( cos ( cot 1 ( 1 1 a 2 ) ) ) ) = cosec ( tan 1 ( cos ( cos 1 1 2 a 2 ) ) ) = cosec ( tan 1 ( 1 2 a 2 ) ) = cosec ( cosec 1 ( 3 a 2 ) ) x = 3 a 2 x 2 + a 2 = 3

4. ⇒  (MHT CET 2023 12th May Morning Shift )

The value of sin ( cot 1 x ) is

A. 1 1 + x 2

B. 1 + x 2

C. 1 x 1 + x 2

D. x 1 + x 2

Correct answer option is (A)

sin ( cot 1 x )  Let  cot 1 x = t x = cot t 1 + cot 2 t = 1 + x 2 cosec 2 t = 1 + x 2 cosec t = 1 + x 2 sin t = 1 1 + x 2 t = sin 1 ( 1 1 + x 2 ) sin ( cot 1 x ) = sin ( sin 1 ( 1 1 + x 2 ) ) = 1 1 + x 2

5. ⇒  (MHT CET 2023 11th May Evening Shift )

If cos 1 p + cos 1 1 p + cos 1 1 q = 3 π 4 , then q is

A. 1 2

B. 1 2

C. 1

D. 1 3

Correct answer option is (A)

cos 1 p cos 1 1 p + cos 1 1 q = 3 π 4  Let  t = cos 1 p p = cos 2 t p = 1 sin 2 t sin t = 1 p t = sin 1 1 p

cos 1 p = sin 1 1 p

Given equation becomes

sin 1 1 p cos 1 1 p + cos 1 1 q = 3 π 4 π 2 + cos 1 1 q = 3 π 4 [ cos 1 a + sin 1 a = π 2 ] cos 1 1 q = π 4 1 q = cos ( π 4 ) q = 1 1 2 q = 1 2