Home Courses Contact About


6. ⇒  (MHT CET 2023 9th May Evening Shift )

1 2 d x ( x 2 2 x + 4 ) 3 2 = k k + 5 , then  k  has the value 

A. 1

B. 2

C. 1

D. 2

Correct Option is (A)

 Let  I = 1 2 d x ( x 2 2 x + 4 ) 3 2 = 1 2 d x [ ( x 1 ) 2 + 3 ] 3 2  Put  x 1 = 3 tan θ d x = 3 sec 2 θ d θ  When  x = 1 , θ = 0  When  x = 2 , θ = π 6

I = 0 π 6 3 sec 2 θ [ 3 tan 2 θ + 3 ] 3 2   d θ = 0 π 6 3 sec 2 θ [ 3 ( 1 + tan 2 θ ) ] 3 2 = 0 π 6 3 sec 2 θ 3 3 ( sec 2 θ ) 3 2 = 0 π 6 1 3 sec 2 θ sec 3 θ = 1 3 0 π 6 cos θ = 1 3 [ sin θ ] 0 π 6 I = 1 3 [ sin π 6 sin 0 ] I = 1 6 k k + 5 = 1 6 6 k = k + 5 k = 1

7. ⇒  (MHT CET 2023 9th May Morning Shift )

If f ( x ) is a function satisfying f ( x ) = f ( x ) with f ( 0 ) = 1 and g ( x ) is a function that satisfies f ( x ) + g ( x ) = x 2 . Then the value of the integral 0 1 f ( x ) g ( x ) d x is

A. e e 2 2 5 2

B. e + e 2 2 3 2

C. e e 2 2 3 2

D. e + e 2 2 + 5 2

Correct Option is (C)

As f ( x ) = f ( x )

f ( x ) f ( x ) = 1

Integrating on both sides, we get

log f ( x ) = x + c ..... (i)

As f ( 0 ) = 1

 (i)  c = 0 log f ( x ) = x f ( x ) = e x

As f ( x ) + g ( x ) = x 2

g ( x ) = x 2 e x

f ( x ) g ( x ) = e x ( x 2 e x ) = 0 1 ( e x x 2 e 2 x ) d x = [ ( x 2 2 x + 2 ) e x ] 0 1 1 2 e 2 + 1 2 = e 1 2 e 2 3 2

8. ⇒  (MHT CET 2021 21th September Evening Shift )

5 10 d x ( x 1 ) ( x 2 ) =

A. log | 27 32 |

B. log | 3 4 |

C. log | 8 9 |

D. log | 32 27 |

Correct Option is (D)

Let

I = 5 10 d x ( x 1 ) ( x 2 ) = 5 10 [ 1 x 1 1 x 2 ] ( 1 ) d x = 5 10 [ 1 x 1 1 x 2 ] d x = [ log | x 1 | ] 5 10 + [ log | x 2 | ] 5 10 = [ log | 9 | log | 4 | ] + [ log | 8 | log 31 ] = [ log | 8 3 | ] [ log | 9 4 | ] = log | 8 3 × 4 9 | = log | 32 27 |

9. ⇒  (MHT CET 2021 20th September Evening Shift )

If 2 f ( x ) 3 f ( 1 x ) = x , then 1 e f ( x ) d x =

A. ( 2 + e 2 5 )

B. 2 + e 5

C. 2 + e 2 5

D. 2 e 2 5

Correct Option is (A)

2 f ( x ) 3 f ( 1 x ) ..... (1) and replacing x by 1 x , we get

2 f ( 1 x ) 3 f ( x ) = 1 x ..... (2)

[ 2 × equation (1) ] + [ 3 × equation (2)] gives,

4 f ( x ) 9 f ( x ) = 2 x + 3 x 5 f ( x ) = 2 x + 3 x f ( x ) = 2 5 x 3 5 x 1 e f ( x ) d x = 1 e ( 2 5 x 3 5 x ) d x = 2 5 1 e x d x 3 5 1 e 1 x d x = 2 5 [ x 2 2 ] 1 e 3 5 [ log x ] 1 e = 1 5 ( e 2 1 ) 3 5 ( log e log 1 ) = 1 5 e 2 + 1 5 3 5 = ( 2 + e 2 5 )

10. ⇒  (MHT CET 2021 20th September Evening Shift )

If 2 e [ 1 log x 1 ( log x ) 2 ] d x = a + b log 2 , then

A. a = e , b = 2

B. a = e , b = 2

C. a = e , b = 2

D. a = e , b = 2

Correct Option is (B)

a + b log 2 = 2 e [ 1 log x 1 ( log x ) 2 ] d x

Put log x = t 1 x d x = d t d x = e t d t

When x = e , t = 1 and when x = 2 , t = log 2

a + b log 2 = log 2 1 ( 1 t 1 t 2 ) e t dt = [ e t 1 t ] log 2 1 = e e log 2 log 2 = e 2 log 2 a = e , b = 2