Home Courses Contact About


1. ⇒  (MHT CET 2023 12th May Evening Shift )

The equation of the line, passing through ( 1 , 2 , 3 ) and parallel to planes x y + 2 z = 5 and 3 x + y + z = 6 , is

A. x 1 3 = y 2 5 = z 3 4

B. x 1 3 = y 2 5 = z 3 4

C. x 1 4 = y 2 5 = z 3 3

D. x 1 5 = y 2 7 = z 3 1

Correct answer option is (A)

Required equation of line is

x 1 | 1 2 1 1 | = y 2 | 1 2 3 1 | = z 3 | 1 1 3 1 | x 1 3 = y 2 5 = z 3 4

2. ⇒  (MHT CET 2023 11th May Evening Shift )

x 3 = y k 2 = z intersect, then the value of k is

A. 3 2

B. 2 9

C. 2 3

D. 9 2

Correct answer option is (D)

As the given lines are intersecting, the shortest distance between them is zero.

| x 2 x 1 y 2 y 1 z 2 z 1 a 1   b 1 c 1 a 2   b 2 c 2 | = 0 | 3 1 k + 1 0 1 2 3 4 1 2 1 | = 0 | 2 k + 1 1 2 3 4 1 2 1 | = 0 k = 9 2

3. ⇒  (MHT CET 2023 11th May Evening Shift )

The equation of line passing through the point ( 1 , 2 , 3 ) and perpendicular to the lines x 2 3 = y 1 2 = z + 1 2 and x 2 = y 3 = z 1 is

A. r = ( i ^ + 2 j ^ + 3 k ^ ) + λ ( 4 i ^ + 7 j ^ 13 k ^ )

B. r = ( i ^ + 2 j ^ + 3 k ^ ) + λ ( 4 i ^ + 7 j ^ 13 k ^ )

C. r = ( i ^ + 2 j ^ + 3 k ^ ) + λ ( 4 i ^ 7 j ^ 13 k ^ )

D. r = ( i ^ + 2 j ^ + 3 k ^ ) + λ ( 4 i ^ 7 j ^ 13 k ^ )

Correct answer option is (C)

Required line is perpendicular to the lines x 2 3 = y 1 2 = z + 1 2 and x 2 = y 3 = z 1

Required line is parallel to vector

b ¯ = | i ^ j ^ k ^ 3 2 2 2 3 1 | = 4 i ^ 7 j ^ 13 k ^

The equation of the required line is ( i ^ + 2 j ^ + 3 k ^ ) + λ ( 4 i ^ 7 j ^ 13 k ^ )

4. ⇒  (MHT CET 2023 11th May Morning Shift )

If the direction cosines l ,   m , n of two lines are connected by relations l 5   m + 3 n = 0 and 7 l 2 + 5   m 2 3 n 2 = 0 , then value of l + m + n is

A. 2 6 or 6 14

B. 1 6 or 5 14

C. 2 6 or 5 14

D. 1 6 or 6 14

Correct answer option is (A)

l 5   m + 3 n = 0  and  7 l 2 + 5   m 2 3 n 2 = 0 l = 5   m 3 n  and  7 l 2 = 3 n 2 5   m 2

l = 5 m 3 n  and  7 l 2 = 3 n 2 5 m 2  Putting  l = ( 5 m 3 n )  in  7 l 2 = 3 n 2 5 m 2 , we  7 ( 5 m 3 n ) 2 = 3 n 2 5 m 2 7 ( 25 m 2 30 m n + 9 n 2 ) = 3 n 2 5 m 2 180 m 2 210 m n + 60 n 2 = 0 6 m 2 7 m n + 2 n 2 = 0 ( 3 m 2 n ) ( 2 m n ) = 0

3   m = 2 n  or  2   m = n ..... (i)

If 3   m = 2 n , then l = n 3

m 2 = n 3 = l 1 = 1 14 l + m + n = 6 14

If 2   m = n , then l = n 2

m 1 = n 2 = l 1 = 1 6 l + m + n = 2 6

The possible values of l + m + n is 2 6 or 6 14

5. ⇒  (MHT CET 2023 11th May Morning Shift )

The vector equation of the line 2 x + 4 = 3 y + 1 = 6 z 3 is

A. r = ( 2 i ^ + 1 3 j ^ + 1 2 k ^ ) + λ ( 3 i ^ + 2 j ^ + k )

B. r = ( 2 i ^ 1 3 j ^ + 1 2 k ^ ) + λ ( 3 i ^ + 2 j ^ + k ^ )

C. r = ( 2 i ^ + j ^ + k ^ ) + λ ( 3 i ^ + 2 j ^ + k )

D. r = ( 2 i ^ j ^ + k ^ ) + λ ( 3 i ^ + 2 j ^ + k ^ )

Correct answer option is (B)

The equation of line is

2 x + 4 = 3 y + 1 = 6 z 3 2 ( x + 2 ) = 3 ( y + 1 3 ) = 6 ( z 1 2 ) x + 2 1 2 = y + 1 3 1 3 = z 1 2 1 6 x + 2 3 = y + 1 3 2 = z 1 2 1

The given line passes through ( 2 , 1 3 , 1 2 ) and has direction ratios proportional to 3 , 2 , 1 .

Vector equation of the line is

r ¯ = ( 2 i ^ 1 3 j ^ + 1 2 k ^ ) + λ ( 3 i ^ + 2 j ^ + k ^ )