Home Courses Contact About


1. ⇒  (MHT CET 2023 11th May Morning Shift )

The lines x 1 3 = y + 1 2 = z 1 5 and x + 2 4 = y 1 3 = z + 1 2

A. intersect each other and point of intersection is ( 2 , 1 , 3 )

B. intersect each other and point of intersection is ( 3 , 2 , 4 )

C. intersect each other and point of intersection is ( 2 , 3 , 3 )

D. do not intersect.

Correct answer option is (D)

The given lines are x 1 3 = y + 1 2 = z 1 5 and x + 2 4 = y 1 3 = z + 1 2

Here,

( x 1 , y 1 , z 1 ) ( 1 , 1 , 1 ) ( x 2 , y 2 , z 2 ) ( 2 , 1 , 1 ) ( a 1 , b 1 , c 1 ) ( 3 , 2 , 5 ) ( a 2 , b 2 , c 2 ) ( 4 , 3 , 2 )

 Consider  | x 2 x 1 y 2 y 1 z 2 z 1 a 1 b 1 c 1 a 2 b 2 c 2 | = | 3 2 2 3 2 5 4 3 2 | = 3 ( 11 ) 2 ( 14 ) 2 ( 1 ) = 33 + 28 2 = 59 0

The lines are not intersecting.

2. ⇒  (MHT CET 2023 10th May Evening Shift )

Two lines x 3 1 = y + 1 3 = z 6 1 and x + 5 7 = y 2 6 = z 3 4 intersect at the point R. Then reflection of R in the x y -plane has co-ordinates

A. ( 2 , 4 , 7 )

B. ( 2 , 4 , 7 )

C. ( 2 , 4 , 7 )

D. ( 2 , 4 , 7 )

Correct answer option is (A)

Let x 3 1 = y + 1 3 = z 6 1 = λ

x = 3 + λ , y = 3 λ 1 , z = λ + 6

Let x + 5 7 = y 2 6 = z 3 4 = μ

x = 7 μ 5 , y = 6 μ + 2 , z = 4 μ + 3

Both the given lines intersect each other.

So, λ + 3 = 7 μ 5

7 μ λ = 8 .... (i)

Also, 3 λ 1 = 6 μ + 2

6 μ + 3 λ = 3 .... (ii)

From (i) and (ii), we get

μ = 1 , λ = 1  i.e.,  x = 2 , y = 4 , z = 7

Co-ordinates of the intersection of the given lines are R ( 2 , 4 , 7 )

Hence, reflection of R in the x y -plane is ( 2 , 4 , 7 ) .

3. ⇒  (MHT CET 2021 20th September Morning Shift )

If the lines x 1 2 = y + 1 3 = z 1 4 and x 3 1 = y k 2 = z 1 intersect, then the values of k is

A. 3 2

B. 3 2

C. 2 9

D. 9 2

Correct answer option is (D)

Let x 1 2 = y + 1 3 = z 1 4 = λ and x 3 1 = y k 2 = z 1 = μ

Since given lines intersect, we write

2 λ + 1 = μ + 3 ..... (1)

3 λ 1 = 2 μ + k .... (2)

4 λ + 1 = μ ..... (3)

Substituting value of μ from (3) in (1), we get

2 λ + 1 = ( 4 λ + 1 ) + 3 2 λ = 3 λ = 3 2 μ = 4 ( 3 2 ) + 1 = 6 + 1 = 5

Substituting values of λ and μ in (2), we get

3 ( 3 2 ) 1 = 2 ( 5 ) + k k = 9 2