Home Courses Contact About


1. ⇒  (MHT CET 2023 12th May Evening Shift )

If a , b , c are three non-zero vectors, no two of them are collinear, a + 2 b is collinear with c , b + 3 c is collinear with a , then a + 2 b is

A. 6 c

B. 6 c

C. c ¯

D. 2 c

Correct answer option is (B)

a + 2 b  is collinear with  c a + 2 b = nc .... (i)  Similarly  b + 3 c = ma .... (ii) m  and  n  are non-zero scalars.   (i)  a + 2 b + 6 c = ( n + 6 ) c  (ii)  a + 2 b + 6 c = ( 2   m + 1 ) a n + 6 = 0  and  2   m + 1 = 0 n = 6  and  m = 1 2  (i)  a + 2   b = 6 c

2. ⇒  (MHT CET 2023 12th May Morning Shift )

The centroid of tetrahedron with vertices at A ( 1 , 2 , 3 ) , B ( 3 , 2 , 1 ) , C ( 2 , 1 , 3 ) and D ( 1 , 2 , 4 ) is

A. ( 3 4 , 1 4 , 11 4 )

B. ( 5 4 , 3 4 , 7 4 )

C. ( 3 4 , 1 4 , 11 4 )

D. ( 5 4 , 3 4 , 7 4 )

Correct answer option is (A)

Centroid of tetrahedron

( 1 + 3 + 2 1 4 , 2 2 + 1 2 4 , 3 + 1 + 3 + 4 4 ) ( 3 4 , 1 4 , 11 4 )

3. ⇒  (MHT CET 2023 11th May Evening Shift )

The unit vector perpendicular to each of the vectors a ¯ + b ¯ and a ¯ b ¯ , where a ¯ = i ^ + j ^ + k ^ and b = 3 i ^ 2 j ^ + 5 k ^ is

A. 14 i ^ + 4 j ^ + 10 k ^ 312

B. 14 i ^ 4 j ^ + 10 k ^ 312

C. 14 i ^ + 4 j ^ + 10 k ^ 312

D. 14 i ^ 4 j ^ + 10 k ^ 312

Correct answer option is (A)

a ¯ + b ¯ = ( i ^ + j ^ + k ^ ) + ( 3 i ^ 2 j ^ + 5 k ^ ) = 4 i ^ j ^ + 6 k ^ a ¯ b ¯ = ( i ^ + j ^ + k ^ ) ( 3 i ^ 2 j ^ + 5 k ^ ) = 2 i ^ + 3 j ^ 4 k ^

Vector perpendicular to ( a ¯ + b ¯ ) and ( a ¯ b ¯ ) is

| i ^ j ^ k ^ 4 1 6 2 3 4 | = 14 i ^ + 4 j ^ + 10 k ^

Required unit vector is

14 i ^ + 4 j ^ + 10 k ^ ( 14 ) 2 + 4 2 + ( 10 ) 2 = 14 i ^ + 4 j ^ + 10 k ^ 312

4. ⇒  (MHT CET 2023 11th May Evening Shift )

If a = i ^ + j ^ + k ^ , b = 4 i ^ + 3 j ^ + 4 k ^ and c = i ^ + α j ^ + β k ^ are linearly dependent vectors and | c ¯ | = 3 , then the values of α and β are respectively.

A. 1 , 1

B. 2 , 1

C. 0 , 1

D. 1 , 2

Correct answer option is (A)

Note that only for option (A), i.e., for α = 1 and β = 1 , | c | = 3 holds true.

Option (A) is correct.

5. ⇒  (MHT CET 2023 10th May Evening Shift )

If p ¯ = i ^ + j ^ + k ^ and q ¯ = i ^ 2 j ^ + k ^ . Then a vector of magnitude 5 3 units perpendicular to the vector q ¯ and coplanar with p ¯ and q ¯ is

A. 5 ( i ^ j ^ + k ^ )

B. 5 ( i ^ + j ^ k ^ )

C. 5 ( i ^ j ^ k ^ )

D. 5 ( i ^ + j ^ + k ^ )

Correct answer option is (D)

Let r ¯ = a i ^ + b j ^ + c k ^

As r is perpendicular to q .

r ¯ q ¯ = 0 a 2 b + c = 0 .... (i)

Also, r ¯ is coplanar with vectors p ¯ and q ¯

[ p ¯ q ¯ r ¯ ] = 0 | 1 1 1 1 2 1 a b c | = 0 3 a 3 c = 0 a c = 0 a = c ..... (ii)

From (i) and (ii), we get

b = c r = i ^ + j ^ + k ^

Now, the magnitude of required vector is 5 3 units.

 Required vector  = 5 3 × r | r | = 5 3 × i ^ + j ^ + k ^ 3 = 5 ( i ^ + j ^ + k ^ )