Home Courses Contact About


6. ⇒  (MHT CET 2023 10th May Evening Shift )

If a = m b + nc , where a = 4 i ^ + 13 j ^ 18 k ^ , b = i ^ 2 j ^ + 3 k ^ , c = 2 i ^ + 3 j ^ 4 k ^ , then m + n =

A. 1

B. 2

C. 3

D. -1

Correct answer option is (A)

Given:

a ¯ = 4 i ^ + 13 j ^ 18 k ^ b ¯ = i ^ 2 j ^ + 3 k ^ c ¯ = 2 i ^ + 3 j ^ 4 k ^

Also, a = m b + n c

4 i ^ + 13 j ^ 18 k ^ = m ( i ^ 2 j ^ + 3 k ^ ) + n ( 2 i ^ + 3 j ^ 4 k ^ ) 4 i ^ + 13 j ^ 18 k ^ = ( m + 2 n ) i ^ + ( 2 m + 3 n ) j ^ + ( 3 m 4 n ) k ^

Comparing, we get

m + 2 n = 4  and  2 m + 3 n = 13

Solving above equations, we get m = 2 $ a n d $ n = 3

m + n = 2 + 3 = 1

7. ⇒  (MHT CET 2023 9th May Evening Shift )

Two adjacent sides of a parallelogram are 2 i ^ 4 j ^ + 5 k ^ and i ^ 2 j ^ 3 k ^ , then the unit vector parallel to its diagonal is

A. 3 7 i ^ 6 7 j ^ + 2 7 k ^

B. 2 7 i ^ 6 7 j ^ + 3 7 k ^

C. 6 7 i ^ 2 7 j ^ + 3 7 k ^

D. 1 7 i ^ + 1 7 j ^ 3 7 k ^

Correct answer option is (A)

Let a and b be the adjacent sides of a parallelogram, where

a = 2 i ^ 4 j ^ + 5 k ^ b = i ^ 2 j ^ 3 k ^

Let diagonal be c

c = a + b c = 2 i ^ 4 j ^ + 5 k ^ + i ^ 2 j ^ 3 k ^ = 3 i ^ 6 j ^ + 2 k ^

 Magnitude of  c = 3 2 + ( 6 ) 2 + ( 2 ) 2 = 49 = 7

Unit vector in direction of diagonal c is

= c | c | = 1 7 ( 3 i ^ 6 j ^ + 2 k ^ ) = 3 7 i ^ 6 7 j ^ + 2 7 k ^

8. ⇒  (MHT CET 2023 9th May Evening Shift )

If D , E and F are the mid-points of the sides BC , CA and AB of triangle ABC respectively, then AD + 2 3 BE + 1 3 CF =

A. 1 2 AB

B. 1 2 AC

C. 1 2 BC

D. 2 3 AC

Correct answer option is (B)

Let the position vector of A, B, C, D, E, F be a , b , c , d , e , f respectively.

d = b + c 2 , e = c + a 2 , f = a + b 2

Now, AD + 2 3 BE + 1 3 CF

= d a + 2 3 ( e b ) + 1 3 ( f c ) = b + c 2 a + 2 3 ( c + a 2 b ) + 1 3 ( a + b 2 c ) = b + c 2 a 2 + c + a 2 b 3 + a + b 2 c 6 = 3 c 3 a 6 = 3 6 ( c a ) = 1 2 AC

9. ⇒  (MHT CET 2023 9th May Morning Shift )

If two vertices of a triangle are A ( 3 , 1 , 4 ) and B ( 4 , 5 , 3 ) and the centroid of the triangle is G ( 1 , 2 , 1 ) , then the third vertex C of the triangle is

A. ( 2 , 0 , 2 )

B. ( 2 , 0 , 2 )

C. ( 0 , 2 , 2 )

D. ( 2 , 2 , 0 )

Correct answer option is (B)

Let a , b , c and g be the position vectors of A , B , C and G respectively.

a ¯ = 3 i ^ + 1 j ^ + 4 k ^ , b ¯ = 4 i ^ + 5 j ^ 3 k ^ , g ¯ = i ^ + 2 j ^ + k ^ ,

G is centroid of ABC .

g ¯ = a ¯ + b ¯ + c ¯ 3 3 g ¯ = a ¯ + b ¯ + c ¯ 3 ( i ^ + 2 j ^ + k ^ ) = 3 i ^ + j ^ + 4 k ^ 4 i ^ + 5 j ^ 3 k ^ + c ¯ c ¯ = 3 i ^ + 6 j ^ + 3 k ^ 3 i ^ j ^ 4 k ^ + 4 i ^ 5 j ^ + 3 k ^ = 2 i ^ + 0 j ^ + 2 k ^

Third vertex C ( 2 , 0 , 2 )

10. ⇒  (MHT CET 2023 9th May Morning Shift )

Let two non-collinear vectors a ^ and b ^ form an acute angle. A point P moves, so that at any time t the position vector OP , where O is origin, is given by a ^ sin t + b ^ cos t , when P is farthest from origin O , let M be the length of OP and u ^ be the unit vector along OP , then

A. u ^ = a ^ + b ^ | a ^ + b ^ | and M = ( 1 + a ^ b ^ ) 1 2

B. u ^ = a ^ b ^ | a ^ b ^ | and M = ( 1 + a ^ b ^ ) 1 2

C. u ^ = a ^ + b ^ | a ^ + b ^ | and M = ( 1 + 2 a ^ b ^ ) 1 2

D. u ^ = a ^ b ^ | a ^ b ^ | and M = ( 1 2 a ^ b ^ ) 1 2

Correct answer option is (A)

M = | OP | M = ( a ^ sin t + b ^ cos t ) 2 = ( a ^ sin t ) 2 + ( b ^ cos t ) 2 + 2 ( a ^ sin t ) ( b ^ cos t ) = sin 2 t + cos 2 t + a ^ b ^ ( 2 sin t cos t ) = 1 + a ^ b ^ ( sin 2 t )  Maximum value of  sin 2 t = 1 2 t = sin 1 ( 1 ) t = π 4 M = 1 + a ^ b ^ ( l ) = ( 1 + a ^ b ^ ) 1 2  Now,  u ^ = OP | OP | = a ^ sin t + b ^ cos t | a ^ sin t + b ^ cos t | = a ^ ( 1 2 ) + b ^ ( 1 2 ) | a ^ ( 1 2 ) + b ^ ( 1 2 ) |

Unit vector of OP is

u ^ = a ^ + b ^ | ( a ^ + b ^ ) |