Home Courses Contact About


1. ⇒  (MHT CET 2023 12th May Morning Shift )

The function f ( x ) = sin 4 x + cos 4 x is increasing in

A. 0 < x < π 8

B. π 4 < x < π 2

C. 3 π 8 < x < 5 π 8

D. 5 π 8 < x < 3 π 4

Correct Option is (B)

f ( x ) = sin 4 x + cos 4 x f ( x ) = 4 sin 3 x cos x 4 cos 3 x sin x = 4 sin x cos x ( sin 2 x cos 2 x ) = 2 sin 2 x cos 2 x = sin 4 x

If f ( x ) is increasing, then f ( x ) > 0

 i.e.,  sin 4 x > 0 π < 4 x < 2 π π 4 < x < π 2

2. ⇒  (MHT CET 2023 11th May Evening Shift )

If the function f is given by f ( x ) = x 3 3 ( a 2 ) x 2 + 3 a x + 7 , for some a R , is increasing in ( 0 , 1 ] and decreasing in [ 1 , 5 ) , then a root of the equation f ( x ) 14 ( x 1 ) 2 = 0 ( x 1 ) is

A. 7

B. 6

C. 7

D. 5

Correct Option is (C)

f ( x ) = x 3 3 ( a 2 ) x 2 + 3 a x + 7

As f ( x ) is increasing in ( 0 , 1 ] and decreasing in [ 1 , 5 ) , we get that f ( x ) has critical point at x = 1

f ( 1 ) = 0 f ( x ) = 3 x 2 6 ( a 2 ) x + 3 a 3 ( 1 ) 2 6 ( a 2 ) + 3 a = 0 a = 5 f ( x ) 14 ( x 1 ) 2 = x 3 9 x 2 + 15 x 7 ( x 1 ) 2 = ( x 1 ) 2 ( x 7 ) ( x 1 ) 2 = x 7

The required root is 7.

3. ⇒  (MHT CET 2023 11th May Morning Shift )

If f ( x ) = x e x ( 1 x ) , x R , then f ( x ) is

A. increasing in [ 1 2 , 1 ]

B. decreasing R

C. increasing in R

D. decreasing in [ 1 2 , 1 ]

Correct Option is (A)

f ( x ) = x e x ( 1 x ) f ( x ) = x e x ( 1 x ) [ x ( 1 ) + ( 1 x ) ] + e x ( 1 x ) = e x ( 1 x ) ( x 2 x 2 + 1 )

For f ( x ) to be increasing, f ( x ) 0

e x ( 1 x ) ( x 2 x 2 + 1 ) 0 x 2 x 2 + 1 0 2 x 2 x 1 0 ( 2 x + 1 ) ( x 1 ) 0 x [ 1 2 , 1 ]

For f ( x ) to be decreasing, f ( x ) 0

( 2 x + 1 ) ( x 1 ) 0 x ( , 1 2 ] [ 1 , )

4. ⇒  (MHT CET 2023 9th May Evening Shift )

The equation x 3 + x 1 = 0 has

A. no real root.

B. exactly two real roots.

C. exactly one real root.

D. all three real roots.

Correct Option is (C)

 Given equation  x 3 + x 1 = 0  Let  f ( x ) = x 3 + x 1 f ( x ) = 3 x 2 + 1 f ( x ) > 0 x R f ( x )  is increasing   for  x 2 > x 1 , f ( x 2 ) > f ( x 1 )  Now,  f ( 0 ) = 1  and  f ( 1 ) = 1 f ( x ) = 0  for some  x ( 0 , 1 )  Equation has one real root. 

5. ⇒  (MHT CET 2023 9th May Evening Shift )

The range of values of x for which f ( x ) = x 3 + 6 x 2 36 x + 7 is increasing in

A. ( , 6 ) ( 2 , )

B. ( 6 , 2 )

C. ( , 2 ) ( 6 , )

D. ( 6 , 2 ]

Correct Option is (A)

f ( x ) = x 3 + 6 x 2 36 x + 7 f ( x ) = 3 x 2 + 12 x 36 = 3 ( x 2 + 4 x 12 )

For f ( x ) to be increasing,

f ( x ) > 0 3 ( x 2 + 4 x 12 ) > 0 x 2 + 4 x 12 > 0 ( x + 6 ) ( x 2 ) > 0 x ( , 6 ) ( 2 , )