Home Courses Contact About


1. ⇒  (MHT CET 2023 12th May Evening Shift)

A poster is to be printed on a rectangular sheet of paper of area 18   m 2 . The margins at the top and bottom of 75   cm each and at the sides 50   cm each are to be left. Then the dimensions i.e. height and breadth of the sheet, so that the space available for printing is maximum, are ________ respectively.

A. 2 3   m , 3 3   m

B. 3 3   m , 2 3   m

C. 3   m , 6   m

D. 6   m , 3   m

Correct Option is (B)

MHT CET 2023 12th May Evening Shift Mathematics - Application of Derivatives Question 3 English Explanation

Let height and breadth of the sheet be ' y ' m and ' x ' m respectively.

x y = 180000   cm 2

y = 180000 x

The area available for printing is

A = ( y 150 ) ( x 100 ) = ( 180000 x 150 ) ( x 100 ) = 180000 18000000 x 150 x 15000 = 165000 150 x 18000000 x dA d x = 0 150 + 18000000 x 2 dA d x = 0 x 2 = 18000000 150 = 120000

x = 200 3   cm y = 180000 200 3 = 300 3   cm

Now, d 2   A   d x 2 = 36000000 x 3

 At  x = 200 3   cm , d 2   A   d x 2 < 0

Area is maximum at x = 200 3   cm and y = 300 3   cm y = 3 3   m  and  x = 2 3   m

2. ⇒  (MHT CET 2023 11th May Evening Shift )

If a and b are positive number such that a > b , then the minimum value of a sec θ b tan θ ( 0 < θ < π 2 ) is

A. 1 a 2 b 2

B. 1 a 2 + b 2

C. a 2 + b 2

D. a 2 b 2

Correct Option is (D)

 let  f ( θ ) = a sec θ b tan θ f ( θ ) = a sec θ tan θ b sec 2 θ = sec θ ( a tan θ b sec θ ) f ( θ ) = 0 sec θ ( a tan θ b sec θ ) = 0 a tan θ b sec θ = 0 [  As  0 < π < π 2 , sec θ 0 ] a sin θ b = 0 [  As  0 < π < π 2 , cos θ 0 ]

sin θ = b a sec θ = a a 2 b 2  and  tan θ = b a 2 b 2 ... (i)

Now,

f ( θ ) = sec θ tan θ ( a tan θ b sec θ ) + sec θ ( a sec 2 θ b sec θ tan θ ) = a tan 2 θ sec θ b sec 2 θ tan θ + a sec 3 θ b sec 2 θ tan θ = a sec θ ( tan 2 θ + sec 2 θ ) = a sec θ ( 1 + 2 tan 2 θ ) > 0 [  a is positive and  0 < θ < π 2 ]

f ( θ ) is minimum when sin θ = b a .

Minimum value of f ( θ )

= a ( a a 2 b 2 ) b ( b a 2 b 2 ) [  From (i)  ] = a 2 b 2 a 2 b 2 = a 2 b 2

3. ⇒  (MHT CET 2023 10th May Evening Shift )

The value of α , so that the volume of parallelopiped formed by i ^ + α j ^ + k ^ , j ^ + α k ^ and α i ^ + k ^ becomes minimum, is

A. 3

B. 3

C. 1 3

D. 1 3

Correct Option is (C)

 Volume of parallelopiped  = | 1 α 1 0 1 α α 0 1 | V = 1 + α 3 α

For maxima or minima,

dV d α = 0 3 α 2 1 = 0 α = ± 1 3

Now, d 2 V d α 2 = 6 α

For α = 1 3 ,

d 2   V d x 2 > 0

V is minimum at α = 1 3 .

4. ⇒  (MHT CET 2023 10th May Morning Shift )

An open metallic tank is to be constructed, with a square base and vertical sides, having volume 500 cubic meter. Then the dimensions of the tank, for minimum area of the sheet metal used in its construction, are

A. 5   m , 5   m , 10   m

B. 10   m , 10   m , 5   m

C. 2   m , 2   m , 8   m

D. 15   m , 15   m , 5   m

Correct Option is (B)

Let the length, breadth and depth of open tank be x , x and y respectively.

Volume ( V ) = x 2 y

500 = x 2 y ..... (i)

Total surface area of open tank is given by

S = x 2 + 4 x y ..... (ii)

From (i), y = 500 x 2

From (ii), S = x 2 + 4 x × 500 x 2

= x 2 + 2000 x

Differentiating w.r.t. x , we get

dS d x = 2 x 2000 x 2

For minimum area, dS d x = 0

2 x 2000 x 2 = 0 2000 = 2 x 3 x 3 = 1000

x = 10   m d 2   S   d x 2 = 2 + 4000 x 3 ( d 2   S   d x 2 ) x = 10 > 0

S is minimum when x = 10   m and y = 5   m ...[From (i)]

5. ⇒  (MHT CET 2023 9th May Evening Shift )

The maximum value of the function f ( x ) = 3 x 3 18 x 2 + 27 x 40 on the set S = { x R / x 2 + 30 11 x } is

A. 122

B. 132

C. 112

D. 222

Correct Option is (A)

S = { x R / x 2 + 30 11 x } x 2 + 30 11 x x 2 11 x + 30 0 ( x 5 ) ( x 6 ) 0 x [ 5 , 6 ]  Now,  f ( x ) = 3 x 3 18 x 2 + 27 x 40 f ( x ) = 9 x 2 36 x + 27 f ( x ) = 9 ( x 2 4 x + 3 ) = 9 [ ( x 2 4 x + 4 ) 1 ] = 9 ( x 2 ) 2 9 f ( x ) > 0 x [ 5 , 6 ]

f ( x ) is strictly increasing in the interval [ 5 , 6 ]

Maximum value of f ( x ) when x [ 5 , 6 ] is f ( 6 ) = 122