Home Courses Contact About


1. ⇒  (MHT CET 2023 11th May Morning Shift)

Value of c satisfying the conditions and conclusions of Rolle's theorem for the function f ( x ) = x x + 6 , x [ 6 , 0 ] is

A. 4

B. 4

C. 3

D. 3

Correct Option is (A)

f ( x ) = x x + 6 f ( x ) = x ( 1 2 x + 6 ) + x + 6 ( 1 ) = x 2 x + 6 + x + 6

Since f ( x ) satisfies all the conditions of Rolle's Theorem,

There exists c ( 6 , 0 ) such that

f ( c ) = 0 c 2 c + 6 + c + 6 = 0 c + 2 c + 12 = 0 c = 4

2. ⇒  (MHT CET 2023 10th May Evening Shift )

The value of c for the function f ( x ) = log x on [ 1 , e] if LMVT can be applied, is

A. e 2

B. e + 1

C. e 1

D. e

Correct Option is (C)

f ( x ) = log x f ( x ) = 1 x

By Lagrange's Mean value theorem,

f ( c ) = f ( e ) f ( 1 ) e 1 1 c = log e log 1 e 1 1 c = 1 e 1 c = e 1

3. ⇒  (MHT CET 2023 9th May Morning Shift )

The value of c of Lagrange's mean value theorem for f ( x ) = 25 x 2 on [ 1 , 5 ] is

A. 15

B. 5

C. 10

D. 1

Correct Option is (A)

f ( x ) = 25 x 2 f ( x = c ) = 2 c 2 25 c 2 = c 25 c 2

Applying Lagrange's mean value theorem, we get

f ( c ) = f ( 1 ) f ( 5 ) 1 5 c 25 c 2 = 25 1 25 5 2 1 5 c 25 c 2 = 24 4

4 c = 24 25 c 2 16 c 2 = 24 ( 25 c 2 ) c 2 = 15 c = ± 15  Since  c = 15  does not lie in  [ 1 , 5 ] c = 15