1. ⇒ (MHT CET 2023 12th May Evening Shift)
The equation of the normal to the curve 3 x 2 − y 2 = 8 , which is parallel to the line x + 3 y = 10 , is
A. x + 3 y + 6 = 0
B. x + 3 y − 3 = 0
C. x + 3 y + 8 = 0
D. x + 3 y − 4 = 0
Correct Option is (C)
3 x 2 − y 2 = 8
Differentiating w.r.t. x , we get
6 x − 2 y d y d x = 0 ∴ d y d x = 3 x y
∴ Slope of the tangent to the curve is 3 x y .
∴ Slope of the normal is − y 3 x .
It is parallel to line x + 3 y = 10 ⇒ slope = − 1 3
∴ − y 3 x = − 1 3 ⇒ x = y
∴ When x = y , equation of the curve becomes 3 x 2 − x 2 = 8
∴ x 2 = 4
∴ x = 2 , − 2 ⇒ y = 2 , − 2
∴ ( 2 , 2 ) and ( − 2 , − 2 ) are the points of contact of the normal and the curve.
∴ Equations are ( y − 2 ) = − 1 3 ( x − 2 ) or ( y + 2 ) = − 1 3 ( x + 2 ) i.e., x + 3 y − 8 = 0 or x + 3 y + 8 = 0
2. ⇒ (MHT CET 2023 12th May Evening Shift )
If the curves y 2 = 6 x and 9 x 2 + b y 2 = 16 intersect each other at right angle, then value of ' b ' is
A. 9 2
B. 6
C. 7 2
D. 4
Correct Option is (A)
y 2 = 6 x .... (i) ⇒ 2 y d y d x = 6 ⇒ d y d x = 3 y Also, 9 x 2 + b y 2 = 16 ⇒ 18 x + 2 b y d y d x = 0 ⇒ d y d x = − 9 x b y
As given curves intersect each other at righ angle, their tangents also intersect at right angles.
3 y × − 9 x b y = − 1 ⇒ b y 2 = 27 x
∴ ( i ) ⇒ b ( 6 x ) = 27 x ⇒ b = 9 2
3. ⇒ (MHT CET 2023 12th May Morning Shift )
The angle between the tangents to the curves y = 2 x 2 and x = 2 y 2 at ( 1 , 1 ) is
A. tan − 1 ( 15 8 )
B. tan − 1 ( 7 8 )
C. tan − 1 ( 3 4 )
D. tan − 1 ( 1 4 )
y = 2 x 2
∴ Slope of the tangent to this curve is
d y d x = m 1 = 4 x ∴ at ( 1 , 1 ) , m 1 = 4 x = 2 y 2
∴ Slope of the tangent to this curve is d y d x = m 2 = 1 4 y
∴ at ( 1 , 1 ) , m 2 = 1 4
Let θ be the angle between two tangents.
∴ tan θ = | m 1 − m 2 1 + m 1 m 2 | = | 4 − 1 4 1 + 4 × 1 4 | = 15 8 ∴ θ = tan − 1 ( 15 8 )
4. ⇒ (MHT CET 2023 11th May Evening Shift )
The equation of the tangent to the curve y = 9 − 2 x 2 , at the point where the ordinate and abscissa are equal, is
A. 2 x + y + 3 = 0
B. 2 x + y + 3 3 = 0
C. 2 x − y − 3 3 = 0
D. 2 x + y − 3 3 = 0
Correct Option is (D)
Given curve is y = 9 − 2 x 2
If ordinate and abscissa are equal, we get y = x .
∴ Equation of the curve becomes x 2 = 9 − 2 x 2
⇒ x = ± 3
If x = − 3 , then y = 9 − 2 ( 3 ) = 3
In this case, x ≠ y .
Hence, x ≠ − 3
∴ x = 3 and y = 3
∴ Slope of the tangent to the given curve is 2 y d y d x = − 4 x
∴ at ( 3 , 3 ) , d y d x = − 2
∴ Equation of the required tangent is
( y − 3 ) = − 2 ( x − 3 ) i.e., 2 x + y − 3 3 = 0
5. ⇒ ( MHT CET 2023 10th May Morning Shift)
If the line a x + b y + c = 0 is a normal to the curve x y = 1 , then
A. a > 0 , b > 0
B. a > 0 , b < 0
C. a < 0 , b < 0
D. a = 0 , b = 0
Correct Option is (B)
x y = 1 ∴ y = 1 x ∴ y ′ = − 1 x 2 ∴ Slope of the normal = x 2 Slope of the line a x + b y + c = 0 is − a b .
Since the line a x + b y + c = 0 is a normal to the curve x y = 1 ,
x 2 = − a b
For this condition to hold true, either a < 0 , b > 0 or b < 0 , a > 0