Home Courses Contact About


6. ⇒  (MHT CET 2023 10th May Evening Shift )

In a triangle ABC , with usual notations, if c = 4 , then value of ( a b ) 2 cos 2 C 2 + ( a + b ) 2 sin 2 C 2 is

A. 4

B. 16

C. 9

D. 25

Correct answer option is (B)

( a b ) 2 cos 2 C 2 + ( a + b ) 2 sin 2 C 2 = ( a 2 2 a b + b 2 ) cos 2 C 2 + ( a 2 + 2 a b + b 2 ) sin 2 C 2 = ( a 2 + b 2 ) ( cos 2 C 2 + sin 2 C 2 ) 2 a b cos 2 C 2 + 2 a b sin 2 C 2 = a 2 + b 2 2 a b ( cos 2 C 2 sin 2 C 2 ) = a 2 + b 2 2 a b cos 2 = a 2 + b 2 ( a 2 + b 2 c 2 ) [ B y  Cosine rule  ] = c 2 = 4 2 = 16

7. ⇒  (MHT CET 2023 10th May Morning Shift )

If one side of a triangle is double the other and the angles opposite to these sides differ by 60 , then the triangle is

A. obtuse angled

B. right angled

C. acute angled

D. isosceles

Correct answer option is (B)

In ABC , by sine rule,

sin A a = sin B b = sin C c

According to the given condition,

In ABC , a = 2   b and

A B = 60 A = 60 + B sin ( 60 + B ) 2   b = sin B b sin B sin ( B + 60 ) = 1 2 2 sin B = sin B cos 60 + cos B sin 60 2 sin B = sin B ( 1 2 ) + cos B ( 3 2 ) 3 2 sin B = 3 2 cos B

tan B = 1 3 B = 30 A = 30 + 60 = 90

ABC is right angled.

8. ⇒  (MHT CET 2023 9th May Evening Shift )

In PQR , sin P , sin Q and sin R are in A.P., then

A. its altitudes are in A.P.

B. its altitudes are in H.P.

C. its medians are in G.P.

D. its medians are in A.P.

Correct answer option is (B)

MHT CET 2023 9th May Evening Shift Mathematics - Properties of Triangles Question 15 English Explanation

Let p 1 , p 2 , p 3 be the altitudes of PQR Area of PQR

= 1 2 ×  base  ×  height  = 1 2 × p 1 × a

Area = 1 2 p 1 a

p 1 = 2 ×  Area  a ..... (i)

similarly,

p 2 = 2 ×  Area  b ..... (ii)

p 3 = 2 ×  Area  c ..... (iii)

By sine Rule,

a sin P = b sin Q = c sin R

Let a sin P = b sin Q = c sin R = k

sin P = a k , sin Q = b k , sin R = c k

sin P , sin Q and sin R are in A.P.

a, b, c are in A.P.

1 a , 1 b , 1 c are in H.P. ..... (iv)

From equations (i), (ii), (iii) and (iv), we get p 1 , p 2 and p 3 are in H.P.

9. ⇒  (MHT CET 2023 9th May Evening Shift )

Let a , b , c be the lengths of sides of triangle A B C such that a + b 7 = b + c 8 = c + a 9 = k . Then ( A ( ABC ) ) 2 k 4 =

A. 36

B. 32

C. 38

D. 40

Correct answer option is (A)

 In  A B C a + b 7 = b + c 8 = c + a 9 = k ... [Given] a + b = 7 k .... (i) b + c = 8 k .... (ii) c + a = 9 k .... (iii)

Adding above equations,

2 a + 2   b + 2 c = 24 k a + b + c = 12 k .... (iv)

Solving equations (i), (ii), (iii), (iv) We get,

c = 5 k , a = 4 k , b = 3 k c 2 = a 2 + b 2

ABC is right angled triangle

C = 90

MHT CET 2023 9th May Evening Shift Mathematics - Properties of Triangles Question 12 English Explanation

 Area of  ABC = 1 2 ab sin C = 1 2 ab sin 90 = 1 2 × 4 k × 3 k = 6 k 2  Now,  [ A ( ABC ) ] 2 k 4 = ( 6 k 2 ) 2 k 4 = 36 k 4 k 4 = 36

10. ⇒  (MHT CET 2023 9th May Evening Shift )

In ABC , with usual notations, m C = π 2 , if tan ( A 2 ) and tan ( B 2 ) are the roots of the equation a 1 x 2 + b 1 x + c 1 = 0 ( a 1 0 ) , then

A. a 1 + b 1 = c 1

B. b 1 + c 1 = a 1

C. a 1 + c 1 = b 1

D. b 1 = c 1

Correct answer option is (A)

 In  ABC , A + B + C = 180 A + π 2 + B = 180 A + B = π 2 A 2 + B 2 = π 4 tan ( A 2 )  and  tan ( B 2 )  are roots of equation  a 1 x 2 + b 1 x + c 1 = 0 ... [Given] Sum  of roots  = b 1 a 1 tan ( A 2 ) + tan ( B 2 ) = b 1 a 1

Also, tan ( A 2 ) tan ( B 2 ) = c 1 a 1

Using tan ( A 2 + B 2 ) = tan A 2 + tan B 2 1 tan A 2 tan B 2 , we get

tan ( π 4 ) = b 1 a 1 1 c 1 a 1

1 = b 1 a 1 c 1

a 1 c 1 = b 1

a 1 + b 1 = c 1