Home Courses Contact About


6. ⇒  (MHT CET 2023 11th May Morning Shift )

If a = i ^ + j ^ , b = 2 j ^ k ^ and r × a = b × a , r × b = a × b , then the value r | r | is

A. i ^ + 3 j ^ + k ^ 11

B. i ^ 3 j ^ + k ^ 11

C. i ^ 3 j ^ k ^ 11

D. i ^ + 3 j ^ k ^ 11

Correct answer option is (D)

Let r = x i ^ + y j ^ + z k ^ then

r × a = b × a ( r b ) × a = 0 | i ^ j ^ k ^ x y 2 z + 1 1 1 0 | = 0 ( z 1 ) i ^ ( z 1 ) j ^ + ( x y + 2 ) k ^ = 0 z = 1 , x y = 2 .... (i)

Now, r × b = a × b = ( r a ) × b = 0

| i ^ j ^ k ^ x 1 y 1 z 0 2 1 | = 0 ( 1 y 2 z ) i ^ ( 1 x ) j ^ + ( 2 x 2 ) k ^ = 0 1 y 2 z = 0 , x = 1 .... (ii)

Solving (i) and (ii), we get

x = 1 , y = 3 , z = 1 r = i ^ + 3 j ^ k ^ | r | = 1 + 9 + 1 = 11 r | r | = i ^ + 3 j ^ k ^ 11

7. ⇒  (MHT CET 2023 11th May Morning Shift )

Let a ¯ , b ¯ and c ¯ be three unit vectors such that a ¯ × ( b ¯ × c ¯ ) = 3 2 ( b ¯ + c ¯ ) . If b ¯ is not parallel to c ¯ , then the angle between a ¯ and b ¯ is

A. 5 π 6

B. 2 π 3

C. π 6

D. π 3

Correct answer option is (A)

a × ( b × c ) = 3 2 ( b + c ) ( a c ) b ( a b ) c = 3 2 b + 3 2 c

On comparing, we get a c = 3 2 and a b = 3 2

| a | | b | cos θ = 3 2 [ | a | = | b | = 1 ] cos θ = 3 2 θ = 5 π 6

8. ⇒  (MHT CET 2023 10th May Morning Shift )

The vectors are a ¯ = 2 i ^ + j ^ 2 k ^ , b ¯ = i ^ + j ^ . If c ¯ is a vector such that a ¯ c ¯ = | c ¯ | and | c ¯ a ¯ | = 2 2 , angle between a ¯ × b ¯ and c ¯ is π 4 , then | ( a ¯ × b ¯ ) × c ¯ | is

A. 3

B. 3 2

C. 3 2

D. 1

Correct answer option is (B)

Given that angle between a × b and c $ i s $ π 4

| ( a ¯ × b ¯ ) × c ¯ | = | ( a ¯ × b ¯ ) | | c ¯ | sin π 4 ..... (i)

Now, a × b = | i ^ j ^ k ^ 2 1 2 1 1 0 |

= i ^ ( 0 + 2 ) j ^ ( 0 + 2 ) + k ^ ( 2 1 ) = 2 i ^ 2 j ^ + k ^ | a × b | = 2 2 + ( 2 ) 2 + 1 = 3

Given, a = 2 i ^ + j ^ 2 k ^

a = 2 2 + 1 2 + ( 2 ) 2 = 3

Given, | c ¯ a ¯ | = 2 2

Squaring on both sides, we get

| c ¯ | 2 + | a ¯ | 2 2 a ¯ c ¯ = 8 | c ¯ | 2 + 3 2 2 | c ¯ | = 8 . . . [ a ¯ . c ¯ = | c ¯ | ]

| c ¯ | 2 2 | c ¯ | + 1 = 0 ( | c ¯ | 1 ) 2 = 0 | c ¯ | = 1

From (i),

| ( a × b ) × c | = | ( a × b ) | | c | sin π 4 = 3 × 1 × 1 2 = 3 2

9. ⇒  (MHT CET 2023 10th May Morning Shift )

Let a ¯ , b ¯ , c ¯ be three non-zero vectors, such that no two of them are collinear and ( a ¯ × b ¯ ) × c ¯ = 1 3 | b ¯ | | c ¯ | a ¯ . If θ is the angle between the vectors b ¯ and c ¯ , then the value of sin θ is

A. 2 2 3

B. 2 3

C. 2 3

D. 2 3

Correct answer option is (A)

Given: ( a × b ) × c = 1 3 | b | | c | a

We know that,

( a × b ) × c = ( a c ) b ( b c ) a

On comparing, we get

1 3 | b | | c | = b c 1 3 | b | | c | = | b | | c | cos θ cos θ = 1 3 cos 2 θ = 1 9 sin 2 θ = 1 cos 2 θ = 1 1 9 sin 2 θ = 8 9 sin θ = 8 9 = 2 2 3

10. ⇒  (MHT CET 2023 9th May Evening Shift )

a = i ^ + j ^ + k ^ , b = j ^ k ^ , then vector r satisfying a × r = b and a r = 3 is

A. 5 3 i ^ + 2 3 j ^ + 2 3 k ^

B. 5 3 i ^ + 2 3 j ^ + 2 3 k ^

C. 5 3 i ^ 2 3 j ^ + 2 3 k ^

D. 5 3 i ^ + 2 3 j ^ + 1 3 k ^

Correct answer option is (A)

Given a r = 3

a × r = b

Let r = x i ^ + y j ^ + z k ^

a × r = | i ^ j ^ k ^ 1 1 1 x y z | = ( z y ) i ^ j ^ ( z x ) + k ^ ( y x )

Given a × r = b

( z y ) i ^ ( z x ) j ^ + ( y x ) k ^ = j ^ k ^

Comparing

z y = 0 ..... (i) z x = 1 ..... (ii) y x = 1 ..... (iii)

Also, a r = 3

( i ^ + j ^ + k ^ ) ( x i ^ + y j ^ + zk ) = 3 x + y + z = 3 ..... (iv)

Solving equations (i), (ii), (iii) and (iv), we get

x = 5 3 , y = 2 3 , z = 2 3 r = 5 3 i ^ + 2 3 j ^ + 2 3 k ^