Home Courses Contact About


11. ⇒  (MHT CET 2021 21th September Evening Shift )

If | a ¯ × b ¯ | 2 + ( a ¯ b ¯ ) 2 = 144 and | a ¯ | = 4 , then | b ¯ | =

A. 8

B. 12

C. 3

D. 16

Correct answer option is (C)

| a × b | 2 + ( a b ) 2 = 144  and  | a | = 4 ( | a | 2 | b | 2 sin 2 θ ) + ( | a | 2 | b | 2 cos 2 θ ) = 144 | a | 2 | b | 2 ( cos 2 θ + sin 2 θ ) = 144 ( 4 ) 2 | b | 2 = 144 | b | 2 = 9 | b | = 3

12. ⇒  (MHT CET 2021 21th September Morning Shift )

If a ¯ = 3 i ^ 5 j ^ , b ¯ = 6 i ^ + 3 j ^ are two vectors and c ¯ is a vector such that c ¯ = a ¯ × b ¯ , then a : b : is

A. 34 : 45 : 39

B. 34 : 45 : 39

C. 34 : 39 : 45

D. 39 : 35 : 34

Correct answer option is (B)

c ¯ = a ¯ × b ¯ = | i ^ j ^ k ^ 3 5 0 6 3 0 | = i ^ ( 0 ) j ^ ( 0 ) + k ^ ( 9 + 30 ) = 39 k ^ | a ¯ | = ( 3 ) 2 + ( 5 ) 2 = 34  and  | b ¯ | = ( 6 ) 2 + ( 3 ) 2 = 45  and  | c ¯ | = 39 2 = 39 a : b : c = 34 : 45 : 39

13. ⇒  (MHT CET 2021 20th September Evening Shift )

If area of the parallelogram with a ¯ and b ¯ as two adjacent sides is 20 square units, then the area of the parallelogram having 3 a + b and 2 a + 3 b as two adjacent sides in square units is

A. 105

B. 120

C. 75

D. 140

Correct answer option is (D)

We have | a × b | = 20 and we have to find value of | ( 3 a + b ) × ( 2 a + 3 b ) |

( 3 a + b ) × ( 2 a + 3 b ) = 6 ( a × a ) + 9 ( a × b ) + 2 ( b × a ) + 3 ( b × b ) = 0 + 9 ( a × b ) 2 ( a × b ) + 0 = 7 ( a × b )

Hence area of the required parallelogram = 7 × 20 = 140

14. ⇒  (MHT CET 2021 20th September Morning Shift )

( 2 i ^ + 6 i ^ + 27 k ^ ) × ( i ^ + λ j ^ + μ k ^ ) = 0 , then λ and μ are respectively

A. 17 2 , 3

B. 3 , 17 2

C. 3 , 27 2

D. 27 2 , 3

Correct answer option is (C)

From given data, we write

| i ^ j ^ k ^ 2 6 27 1 λ μ | = 0 i ^ ( 6 μ 27 λ ) j ^ ( 2 μ 27 ) + k ^ ( 2 λ 6 ) = 0

6 μ 27 λ = 0 ..... (1)

27 2 μ = 0 ..... (2)

2 λ 6 = 0 ..... (3)

From (2) and (3), we get μ = 27 2 and λ = 3 .

These values of λ & μ satisfy eq. (1)