Home Courses Contact About


6. ⇒  (MHT CET 2023 11th May Evening Shift )

If a ¯ = i ^ + 4 j ^ + 2 k ^ , b ¯ = 3 i ^ 2 j ^ + 7 k ^ , c ¯ = 2 i ^ j ^ + 4 k ^ , then a vector d which is parallel to vector a × b and which c d = 15 , is

A. 30 i ^ j ^ 14 k ^

B. 90 i ^ 3 j ^ 42 k ^

C. 90 i ^ + j ^ 7 k ^

D. 30 i ^ 3 j ^ + 7 k ^

Correct answer option is (B)

Here, c ¯ = 2 i ^ j ^ + 4 k ^

And given that c ¯ d ¯ = 15

We verify given options one by one to satisfy the above condition.

Consider option (B),

For d = 90 i ^ 3 j ^ 42 k ^

c ¯ d ¯ = ( 2 ) ( 90 ) + ( 1 ) ( 3 ) + ( 4 ) ( 42 ) = 180 + 3 168 = 15

Option (B) is correct.

7. ⇒  (MHT CET 2023 11th May Evening Shift )

Let a ¯ = 2 i ^ + j ^ 2 k ^ , b ¯ = i ^ + j ^ and c ¯ be a vector such that | c ¯ a ¯ | = 4 , | ( a ¯ × b ¯ ) × c ¯ | = 3 and the angle between c and a × b is π 6 , then a c is equal to

A. -3

B. 3 2

C. 3

D. 3 2

Correct answer option is (D)

a = 2 i ^ + j ^ 2 k ^ , b = i ^ + j ^ | a | = 4 + 1 + 4 = 3 a × b = | i ^ j ^ k ^ 2 1 2 1 1 0 | = 2 i ^ 2 j ^ + k ^ | a × b | = 4 + 4 + 1 = 3

Angle between c and a × b is π 6 .... [Given]

sin π 6 = | ( a × b ) × c | | a × b | | c | 1 2 = 3 3 × | c | | c | = 2

Now, | c a | = 4 ..... [Given]

| c ¯ | 2 + | a ¯ | 2 2 a ¯ c ¯ = 16 4 + 9 2 a c = 16 a c = 3 2

8. ⇒  (MHT CET 2023 11th May Evening Shift )

If a = 2 i ^ + 3 j ^ + 2 k ^ , b = 2 i ^ + j ^ k ^ and c = 3 i ^ j ^ are such that a ¯ + λ b ¯ is perpendicular to c ¯ , then the value of λ is

A. 1 5

B. 3

C. 3 5

D. 3 5

Correct answer option is (D)

According to the given condition, we get

( a + λ b ) c = 0 [ ( 2 + 2 λ ) i ^ + ( 3 + λ ) j ^ + ( 2 λ ) k ^ ] ( 3 i ^ j ^ ) = 0 3 ( 2 + 2 λ ) ( 3 + λ ) = 0 6 + 6 λ 3 λ = 0 3 + 5 λ = 0 λ = 3 5

9. ⇒  (MHT CET 2023 11th May Morning Shift )

If a ¯ , b ¯ , c ¯ are three vectors such that a ( b + c ) + b ( c + a ) + c ( a + b ) = 0 and | a | = 1 , | b ¯ | = 8 and | c ¯ | = 4 , then | a ¯ + b ¯ + c ¯ | has the value _________.

A. 81

B. 9

C. 5

D. 4

Correct answer option is (B)

| a ¯ | = 1 , | b ¯ | = 8 , | c ¯ | = 4 , and  a ( b + c ) + b ( c + a ) + c ( a + b ) = 0 2 ( a b + b c + c a ) = 0 .... (i)

Now,

| a ¯ + b ¯ + c ¯ | 2 = | a ¯ | 2 + | b ¯ | 2 + | c ¯ | 2 + 2 ( a ¯ b ¯ + b ¯ c ¯ + c ¯ a ¯ ) | a ¯ + b ¯ + c ¯ | 2 = 1 + 64 + 16 + 0 [  From (i) ]  | a ¯ + b ¯ + c ¯ | 2 = 81 | a ¯ + b ¯ + c ¯ | = 9

10. ⇒  (MHT CET 2023 11th May Morning Shift )

If a and b are two unit vectors such that a + 2 b and 5 a ¯ 4 b ¯ are perpendicular to each other, then the angle between a ¯ and b ¯ is

A. ( π 4 )

B. ( π 3 )

C. cos 1 ( 1 3 )

D. cos 1 ( 2 7 )

Correct answer option is (B)

Since a ¯ + 2 b ¯ and 5 a ¯ 4 b ¯ are perpendicular to each other

( a + 2 b ) ( 5 a 4 b ) = 0 5 | a | 2 8 | b | 2 + 6 a b = 0 3 + 6 | a | | b | cos θ = 0 [ | a | = | b | = 1 ] cos θ = 1 2 θ = π 3