Home Courses Contact About


11. ⇒  (MHT CET 2023 10th May Evening Shift )

If a ¯ and b ¯ are two unit vectors such that a ¯ + 2 b ¯ and 5 a ¯ 4 b ¯ are perpendicular to each other, then the angle between a ¯ and b ¯ is

A. π 3

B. π 6

C. π 4

D. 2 π 3

Correct answer option is (A)

Given that, a + 2 b and 5 a 4 b are perpendicular to each other.

( a ¯ + 2 b ¯ ) ( 5 a ¯ 4 b ¯ ) = 0 5 | a ¯ | 2 8 | b ¯ | 2 4 a ¯ b ¯ + 10 b ¯ a ¯ = 0 3 + 6 a ¯ b ¯ = 0 . . . [ | a ¯ | = | b ¯ | = 1 ] 6 | a ¯ | | b ¯ | cos θ = 3 cos θ = 1 2 θ = π 3

12. ⇒  (MHT CET 2023 10th May Morning Shift )

Scalar projection of the line segment joining the points A ( 2 , 0 , 3 ) , B ( 1 , 4 , 2 ) on the line whose direction ratios are 6 , 2 , 3 is

A. 23 7

B. 1

C. 7

D. 1 7

Correct answer option is (B)

Let a ¯ be the vector joining A ( 2 , 0 , 3 ) and B ( 1 , 4 , 2 ) .

a = ( 1 ( 2 ) ) i ^ + ( 4 0 ) j ^ + ( 2 3 ) k ^ = 3 i ^ + 4 j ^ k ^  and  b ¯ = 6 i ^ 2 j ^ + 3 k ^  Projection  = a b | b | = 3 × 6 + 4 × ( 2 ) 1 × 3 6 2 + ( 2 ) 2 + 3 2 = 18 8 3 49 = 7 7 = 1

13. ⇒  (MHT CET 2023 10th May Morning Shift )

If a = 2 i ^ + 3 j ^ + 2 k ^ , b = 2 i ^ + j ^ k ^ and c = i ^ + 3 j ^ are such that ( a ¯ + λ b ¯ ) is perpendicular to c ¯ , then the value of λ is

A. 5 11

B. 11 5

C. 11 5

D. 5 11

Correct answer option is (C)

Let d = a + λ b

d = ( 2 i ^ + 3 j ^ + 2 k ^ ) + λ ( 2 i ^ + j ^ k ^ ) = 2 i ^ + 3 j ^ + 2 k ^ + 2 λ i ^ + λ j ^ λ k ^ = ( 2 λ + 2 ) i ^ + ( 3 + λ ) j ^ + ( 2 λ ) k ^

Now, d is perpendicular to c .

c ¯ d ¯ = 0 ( i ^ + 3 j ^ ) [ ( 2 λ + 2 ) i ^ + ( 3 + λ ) j ^ + ( 2 λ ) k ^ ] = 0 1 ( 2 λ + 2 ) + 3 ( 3 + λ ) = 0 2 λ + 2 + 9 + 3 λ = 0 5 λ + 11 = 0 λ = 11 5

14. ⇒  (MHT CET 2023 10th May Morning Shift )

The vector projection of AB on CD , where A ( 2 , 3 , 0 ) , B ( 1 , 4 , 2 ) , C ( 4 , 6 , 8 ) and D ( 7 , 0 , 10 ) , is

A. 1 49 ( 3 i ^ 6 j ^ + 2 k ^ )

B. 1 6 ( i ^ j ^ 2 k ^ )

C. 1 49 ( 3 i ^ 6 j ^ + 2 k ^ )

D. 1 6 ( i ^ j ^ 2 k ^ )

Correct answer option is (C)

AB = i ^ j ^ 2 k ^ CD = 3 i ^ 6 j ^ + 2 k ^

Vector projection of AB on CD

= ( AB CD ) CD | CD | 2 = ( 3 + 6 4 ) ( 3 i ^ 6 j ^ + 2 k ^ ) ( 3 2 + ( 6 ) 2 + 2 2 ) 2 = 1 49 ( 3 i ^ 6 j ^ + 2 k ^ )

15. ⇒  (MHT CET 2023 10th May Morning Shift )

If a ¯ = i ^ + 2 j ^ + k ^ , b ¯ = i ^ j ^ + k ^ , c ¯ = i ^ + j ^ k ^ , then a vector in the plane of a ¯ and b ¯ , whose projection on c is 1 3 , is

A. i ^ + j ^ 2 k ^

B. 3 i ^ + j ^ 3 k ^

C. 4 i ^ j ^ + 4 k ^

D. 2 i ^ + 3 j ^ k ^

Correct answer option is (C)

Let r be the vector coplanar to a and b . Then,

r = a + m b = ( i ^ + 2 j ^ + k ^ ) + m ( i ^ j ^ + k ^ ) = i ^ ( 1 + m ) + j ^ ( 2 m ) + k ^ ( 1 + m ) .... (i)

Since the projection of r along c is 1 3 , r c | c | = ± 1 3

( 1 + m ) + ( 2 m ) ( 1 + m ) 3 = ± 1 3 ( 1 + m ) + ( 2 m ) ( 1 + m ) = ± 1 m = 3  or  m = 1

Substituting m = 3 in equation (i), we get

r ¯ = i ^ ( 1 + 3 ) + j ^ ( 2 3 ) + k ^ ( 1 + 3 ) r ¯ = 4 i ^ j ^ + 4 k ^