Home Courses Contact About


6. ⇒  (MHT CET 2023 9th May Evening Shift)

If slope of a tangent to the curve x y + a x + b y = 0 at the point ( 1 , 1 ) on it is 2 ,

A. 3

B. 1

C. 2

D. 1

Correct Option is (A)

Given curve is

x y + a x + b y = 0  Slope  = 2 = d y d x x y + a x + b y = 0

Differentiating w.r.t. x , we get

x d y   d x + y + a + b d y   d x = 0 ( x + b ) d y   d x = ( y + a ) d y   d x = ( y + a ) x + b ( d y   d x ) ( 1 , 1 ) = 2 2 = ( 1 + a ) 1 + b a + 2   b = 3 ..... (i)

 Since  ( 1 , 1 )  lies on  x y + a x + b y = 0 , we get  a + b = 1 .... (ii)

Solving (i), (ii), we get

a = 1 , b = 2 a b = 1 ( 2 ) = 3

7. ⇒  (MHT CET 2023 9th May Morning Shift )

A spherical raindrop evaporates at a rate proportional to its surface area. If originally its radius is 3   mm and 1 hour later it reduces to 2   mm , then the expression for the radius R of the raindrop at any time t is

A. 6 R = t + 2

B. R ( t + 2 ) = 6

C. R = 6 ( t + 2 )

D. 6 R = t

Correct Option is (B)

According to the given conditions, when t = 0 , R = 3 and when t = 1 , R = 2

This condition is satisfied by only option (B)

8. ⇒  (MHT CET 2021 21th September Morning Shift )

The curves x 2 a 2 + y 2 4 = 1 and y 3 = 16 x intersect each other orthogonally, then a 2 =

A. 2

B. 3 4

C. 1 2

D. 4 3

Correct Option is (D)

x 2 a 2 + y 2 4 = 1 1 a 2 2 x + 1 4 2 y d y d x = 0 d y d x = ( x a 2 ) ( 4 y ) .....(1)

Also y 3 = 16 x

3 y 2 d y d x = 16 d y d x = 16 3 y 2 ...... (2)

Since curves intersect orthogonally, from (1) and (2), we write

( x a 2 ) ( 4 y ) ( 16 3 y 2 ) = 1 64 x 3 a 2 y 3 = 1  and we have  y 3 = 16 x 64 x 3 a 2 ( 16 x ) = 1 a 2 = 4 3

9. ⇒  (MHT CET 2021 20th September Evening Shift )

The equation of tangent to the circle x 2 + y 2 = 64 at the point P ( 2 π 3 ) is

A. x 3 y 16 = 0

B. 3 x + y 16 = 0

C. x + 3 y + 16 = 0

D. x 3 y + 16 = 0

Correct Option is (D)

Circle x 2 + y 2 = ( 8 ) 2 , has radius 8 and centre ( 0 , 0 ) . Point P ( 2 π 3 ) on the circle has coordinates

P ( 8 cos 2 π 3 , 8 sin 2 π 3 )  i.e.  P ( 4 , 4 3 )

Differentiating equation of circle w.r.t. x , we get

2 x + 2 y d y d x = 0 d y d x = x y ( d y d x ) P = 4 4 3 = 1 3

Hence required equation of tangent is

( y 4 3 ) = 1 3 ( x + 4 ) x 3 y + 16 = 0

10. ⇒  (MHT CET 2021 20th September Morning Shift )

The equation of the tangent to the curve y = 4 x e x at ( 1 , 4 e ) is

A. 6 x e 4 y = 5

B. x e 4 y = 0

C. x = 1

D. y = 4 e

Correct Option is (D)

y = 4 x e x d y d x = 4 x e x + 4 e x ( d y d x ) ( 1 , 4 e ) = 4 ( 1 ) e 1 + 4 e 1 = 4 e + 4 e = 0

Thus tangent is parallel to X axis.

Hence required equation of tangent is y = 4 e