Home Courses Contact About


1. ⇒  (MHT CET 2023 11th May Morning Shift )

If d x x 1 x 3 = k log ( 1 x 3 1 1 x 3 + 1 ) + c , (where c is a constant of integration), then value of k is

A. 2 3

B. 2 3

C. 1 3

D. 1 3

Correct Option is (C)

 Let  I = d x x 1 x 3 = x 2   d x x 3 1 x 3   d x  Put  1 x 3 = t 2 3 x 2   d x = 2 tdt x 2   d x = 2 tdt 3

I = ( 2 tdt 3 ) ( 1 t 2 ) t = 2 3 1 1 t 2 dt = 2 3 1 t 2 1 dt = 2 3 × 1 2 log | t 1 t + 1 | + c = 1 3 log | 1 x 3 1 1 x 3 + 1 | + c k = 1 3

2. ⇒  (MHT CET 2023 10th May Evening Shift )

5 tan x tan x 2   d x = x + a log | sin x 2 cos x | + c , (where c is a constant of integration), then the value of a is

A. 1

B. 1 2

C. 2

D. 3

Correct Option is (C)

 Let  I = 5 tan x tan x 2   d x = 5 sin x sin x 2 cos x   d x

Let 5 sin x = A ( sin x 2 cos x ) + B d d x ( sin x 2 cos x )

5 sin x = A ( sin x 2 cos x ) + B ( cos x + 2 sin x ) A + 2   B = 5  and  2   A + B = 0

Solving these equations, we get

A = 1 ,   B = 2 I = 1   d x + 2 cos x + 2 sin x sin x 2 cos x   d x = x + 2 log | sin x 2 cos x | + c

But 5 tan x tan x 2   d x = x + alog | sin x 2 cos x | + c

Comparing, we get a = 2

3. ⇒  (MHT CET 2023 10th May Morning Shift )

If x 7 x 9 d x = A x 2 16 x + 63 + log | ( x 8 ) + x 2 16 x + 63 | + c ,

(where c is a constant of integration) then A is

A. 1

B. 1 2

C. 1

D. 1 2

Correct Option is (C)

 Let  I = x 7 x 9   d x = ( x 7 ) ( x 7 ) ( x 9 ) ( x 7 ) d x = x 7 x 2 16 x + 63   d x

 Let  ( x 7 ) = A [ d d x ( x 2 16 x + 63 ) ] + B x 7 = A ( 2 x 16 ) + B x 7 = 2 A x 16 A + B A = 1 2 , B = 1

I = 1 2 ( 2 x 16 ) + 1 x 2 16 x + 63   d x = 1 2 2 x 16 x 2 16 x + 63   d x + 1 x 2 16 x + 63   d x = 1 2 × 2 x 2 16 x + 63 + 1 ( x 8 ) 2 ( 1 ) 2   d x ...  [ f ( x ) f ( x ) d x = 2 f ( x ) + c ] I = x 2 16 x + 63 + log | x 8 + x 2 16 x + 63 | + c  But,  x 7 x 9   d x = A x 2 16 x + 63 + log | ( x 8 ) + x 2 16 x + 63 | + c

Comparing, we get

A = 1

4. ⇒  (MHT CET 2023 10th May Morning Shift )

1 7 6 x x 2 d x =

A. 1 4 log ( 7 + x 1 x ) + c , where c is a constant of integration.

B. 1 8 log ( 7 + x 1 x ) + c , where c is a constant of integration.

C. 1 16 log ( 7 + x 1 x ) + c , where c is a constant of integration.

D. 1 32 log ( 7 + x 1 x ) + c , where c is a constant of integration.

Correct Option is (B)

 Let I  = 1 7 6 x x 2 d x = 1 7 6 x x 2 9 + 9 d x = 1 16 ( x 2 + 6 x + 9 ) d x = 1 ( 4 ) 2 ( x + 3 ) 2 d x = 1 8 log | 4 + x + 3 4 ( x + 3 ) | + c = 1 8 log | 7 + x 1 x | + c

5. ⇒  (MHT CET 2023 9th May Evening Shift )

If sin x 3 + 4 cos 2 x   d x = A tan 1 (   B cos x ) + c , (where c is a constant of integration), then the value of A + B is

A. 5 2 3

B. 1 2 3

C. 2 3

D. 3 2

Correct Option is (D)

 Let  I = sin x 3 + 4 cos 2 x   d x  Put  cos x = t sin x   d x = dt sin x   d x = dt I = dt 3 + 4 t 2 = 1 1 4 t 2 + 3 = 1 1 ( 2 t ) 2 + ( 3 ) 2 = 1 × 1 2 × 3 tan 1 ( 2 t 3 ) + c I = 1 2 3 tan 1 ( 2 cos x 3 ) + c  But  sin x 3 + 4 cos 2 x   d x = A tan 1 (   B cos x ) + c  Comparing above equations, we get   A  = 1 2 3 ,   B = 2 3  A  + B = 1 2 3 + 2 3 = 3 2 3 = 3 2