Home Courses Contact About


1. ⇒  (MHT CET 2023 9th May Evening Shift )

Let α ( 0 , π 2 ) be fixed. If the integral tan x + tan α tan x tan α d x = A ( x ) cos 2 α + B ( x ) sin 2 α + c , (where c is a constant of integration), then functions A ( x ) and B ( x ) are respectively

A. x + α and log | sin ( x + α ) | .

B. x α and log | sin ( x α ) | .

C. x α and log | cos ( x α ) | .

D. x + α and log | sin ( x α ) | .

Correct Option is (B)

 Let  I = tan x + tan α tan x tan α d x = sin x cos x + sin α cos α sin x cos x sin α cos α d x = sin x cos α + sin α cos x sin x cos α sin α cos x   d x = sin ( x + α ) sin ( x α ) d x  Let  x α = t I = sin ( t + 2 α ) sin t = sin ( t ) cos 2 α + cos ( t ) sin 2 α sin ( t ) d x = cos 2 α 1 d t + sin 2 α cot ( t ) dt = cos 2 α t + sin 2 α log | sin ( t ) | + c I = ( x α ) cos 2 α + log | sin ( x α ) | sin 2 α + c  But  tan x + tan α tan x tan α d x = A ( x ) cos 2 α + B ( x ) sin 2 α + c .... [Given] A ( x ) = x α , B ( x ) = log | sin ( x α ) | + c

2. ⇒  (MHT CET 2023 9th May Morning Shift )

1 sin ( x a ) sin x d x =

A. sin a ( log ( sin ( x a ) cosec x ) ) + c , where c is a constant of integration.

B. cosec a ( log ( sin ( x a ) cosec x ) ) + c , where c is a constant of integration.

C. sin a ( log ( sin ( x a ) sin x ) ) + c , where c is a constant of integration.

D. cosec a ( log ( sin ( x a ) sin x ) ) + c , where c is a constant of integration.

Correct Option is (B)

 Let  I = 1 sin ( x a ) sin x   d x  Put  x a = t x = a + t d x = dt

I = 1 sin t sin ( a + t ) d t = 1 sin a sin a sin t sin ( a + t ) d t = 1 sin a sin ( ( a + t ) t ) sin ( a + t ) sin t d t = 1 sin a [ sin ( a + t ) cos t sin ( a + t ) sin t d t sin t cos ( a + t ) sin ( a + t ) sin t d t ] = 1 sin a [ cot t d t cot ( a + t ) d t ] = cosec a [ log | sin t | log | sin ( a + t ) | ] + c = cosec a [ log sin t sin ( a + t ) ] + c = cosec a [ log ( sin ( x a ) cosec x ) ] + c

3. ⇒  (MHT CET 2021 20th September Evening Shift )

cosec ( x a ) cosec x d x =

A. cosec a log [ sin ( x a ) cosec x ] + c

B. cosec a log [ sin ( x a ) sin x ] + c

C. sin a log [ sin ( x a ) sin x ] + c

D. cosec a log [ cosec ( x a ) sin x ] + c

Correct Option is (A)

 Let  I = cosec ( x a ) cosec x d x = d x sin ( x a ) sin x = sin a sin a sin ( x a ) sin x d x = 1 sin a sin ( a + x x ) sin ( x a ) sin x d x = 1 sin a sin [ x a x ] sin ( x a ) sin x d x = 1 sin a sin [ ( x a ) ( x ) ] sin ( x a ) sin x d x = 1 sin a sin [ ( x a ) x ] sin ( x a ) sin x d x = 1 sin a sin ( x a ) cos x cos ( x a ) sin x sin ( x a ) sin x d x = 1 sin a [ cot x cot ( x a ) ] d x = 1 sin a [ log | sin x | log | sin ( x a ) | ] + c = 1 sin a [ cot x d x cot ( x a ) d x ] = 1 sin a [ log | sin ( x a ) | log | sin x | ] + c = ( cosec a ) [ log | sin ( x a ) sin x | ] + c = cosec a log | sin ( x a ) cosec x | + c