Home Courses Contact About


1. ⇒  (MHT CET 2023 11th May Evening Shift )

x 2 sin ( x 2 + 1 ) sin 2 ( x 2 + 1 ) 2 sin ( x 2 + 1 ) + sin 2 ( x 2 + 1 ) d x =

A. log ( sec ( x 2 + 1 2 ) ) + c, where c is a constant of integration.

B. log ( x 2 + 1 2 ) + c , where c is a constant of integration.

C. log ( sin ( x 2 + 1 2 ) ) + c, where c is a constant of integration.

D. 2 log ( x 2 + 1 ) + c , where c is a constant of integration.

Correct Option is (A)

Let I = x 2 sin ( x 2 + 1 ) sin 2 ( x 2 + 1 ) 2 sin ( x 2 + 1 ) + sin 2 ( x 2 + 1 ) d x

= x 2 sin ( x 2 + 1 ) 2 sin ( x 2 + 1 ) cos ( x 2 + 1 ) 2 sin x ( x 2 + 1 ) + 2 sin ( x 2 + 1 ) cos ( x 2 + 1 ) d x

= x 1 cos ( x 2 + 1 ) 1 + cos ( x 2 + 1 ) d x

= x 2 sin 2 ( x 2 + 1 2 ) 2 cos 2 ( x 2 + 1 2 ) d x

= x tan ( x 2 + 1 2 ) d x

Let ( x 2 + 1 2 ) = t x   d x = dt

I = tan t d t = log ( sec t ) + c = log ( sec ( x 2 + 1 2 ) ) + c

2. ⇒  (MHT CET 2023 11th May Evening Shift )

If cos 8 x + 1 cot 2 x tan 2 x   d x = A cos 8 x + c , where c is an arbitrary constant, then the value of A is

A. 1 16

B. 1 8

C. 1 8

D. 1 16

Correct Option is (D)

I = cos 8 x + 1 cot 2 x tan 2 x d x = 2 cos 2 ( 8 x 2 ) cos 2 x sin 2 x sin 2 x cos 2 x d x [ 1 + cos θ = 2 cos 2 θ 2 ]

= 2 cos 2 ( 4 x ) × sin 2 x × cos 2 x cos 2 2 x sin 2 2 x   d x = cos 2 ( 4 x ) sin ( 4 x ) cos ( 4 x ) d x [ sin 2 θ = 2 sin θ cos θ  and  cos 2 θ = cos 2 θ sin 2 θ ]

= 1 2 2 sin ( 4 x ) cos ( 4 x ) d x = 1 2 sin 8 x d x = cos 8 x 2 × 8 + c = cos 8 x 16 + c

Comparing with ' A cos 8 x + c ', we get A = 1 16

3. ⇒  (MHT CET 2023 11th May Evening Shift )

The value of ( 1 cos x ) cosec 2 x d x is

A. 1 2 tan x 2 + c , where c is a constant of integration.

B. tan x 2 + c , where c is a constant of integration.

C. 2 cot x 2 + c , where c is a constant of integration.

D. cot x 2 + c , where c is a constant of integration.

Correct Option is (B)

Let

I = ( 1 cos x ) cosec 2   d x = 2 sin 2 x 2 [ sin x ] 2   d x [ 1 cos θ = 2 sin 2 θ 2 ] = 2 sin 2 x 2 [ 2 sin x 2 cos x 2 ] 2   d x [ sin θ = 2 sin θ 2 cos θ 2 ] = 1 2 sec 2 x 2   d x = tan x 2 + c

4. ⇒  (MHT CET 2023 10th May Evening Shift )

The value of ( x 2 1 ) d x x 3 2 x 4 2 x 2 + 1 is

A. 2 2 2 x 2 + 1 x 4 + c , where c is a constant of integration.

B. 2 2 + 2 x 2 + 1 x 4 + c , where c is a constant of integration.

C. 1 2 2 2 x 2 + 1 x 4 + c , where c is a constant of integration.

D. 2 2 2 x 2 1 x 4 + c , where c is a constant of integration.

Correct Option is (C)

 Let  I = ( x 2 1 ) d x x 3 2 x 4 2 x 2 + 1 = ( x 2 1 ) d x x 3 x 2 ( 2 2 x 2 + 1 x 4 ) = ( x 2 1 x 5 ) d x 2 2 x 2 + 1 x 4  Put  2 2 x 2 + 1 x 4 = t ( 4 x 3 4 x 5 ) d x = dt x 2 1 x 5   d x = dt 4 I = d t 4 t = 1 4 t 1 2 dt = 1 4 t 1 2 1 2 + c I = 1 2 2 2 x 2 + 1 x 4 + c

5. ⇒  (MHT CET 2021 21th September Evening Shift )

1 x 1 2 + x 1 3 d x =

A. x x 3 + x 6 log | x 6 + 1 | + c

B. 2 x 3 x 3 + 6 x 6 6 log | x 6 + 1 | + c

C. 2 x + 3 x 3 + 6 x 6 + 6 log | x 6 + 1 | + c

D. x + x 3 + x 6 + log | x 6 + 1 | + c

Correct Option is (B)

Let I = d x x 1 2 + x 1 3

Put x 1 6 = t x = t 6 d x = 6 t 5 d t . Also x 1 2 = t 3 and x 1 3 = t 2

I = 6 t 5 d t t 2 ( 1 + t ) = 6 t 3 ( 1 + t ) d t = 6 ( t 3 + 1 ) 1 ( 1 + t ) d t = 6 ( t + 1 ) ( t 2 t + 1 ) ( 1 + t ) d t 6 d t 1 + t = 6 ( t 2 t + 1 ) d t 6 log | 1 + t | + c = 6 t 3 3 6 t 2 2 + 6 t 6 [ log | 1 + t | ] + c = 2 x 3 x 3 + 6 x 6 6 log | 1 + x 6 | + c