Home Courses Contact About


6. ⇒  (MHT CET 2023 9th May Evening Shift )

( tan x + cot x ) d x =

A. 2 sin 1 ( sin x cos x ) + c , where c is a constant of integration.

B. 1 2 sin 1 ( sin x cos x ) + c , where c is a constant of integration.

C. sin 1 ( sin x cos x ) + c , where c is a constant of integration.

D. 2 sin 1 ( sin x cos x ) + c , where c is a constant of integration.

Correct Option is (A)

 Let  I = ( tan x + cot x ) d x = ( sin x cos x + cos x sin x ) d x I = sin x + cos x sin x cos x   d x  Let  sin x cos x = t ( sin x + cos x ) d x = dt  Consider,  sin x cos x = t  Squaring on both sides, we get  1 2 sin t cos t = t 2 1 t 2 = 2 sin t cos t sin t cos t = 1 t 2 2 I = dt 1 t 2 2 I = 2 1 1 t 2 dt I = 2 sin 1 ( t ) + c I = 2 sin 1 ( sin x cos x ) + c

7. ⇒  (MHT CET 2023 9th May Morning Shift )

If I = sin x + sin 3 x cos 2 x d x = P cos x + Q log | 2 cos x 1 2 cos x + 1 | (where c is a constant of integration), then values of P and Q are respectively

A. 1 2 , 3 4 2

B. 1 2 , 3 4 2

C. 1 2 , 3 2 2

D. 1 2 , 3 2 2

Correct Option is (B)

I = sin x + sin 3 x cos 2 x d x = sin x ( 1 + sin 2 x ) 2 cos 2 x 1 d x = sin x ( 2 cos 2 x ) 2 cos 2 x 1 d x

 Put  cos x = t sin x   d x = dt I = t 2 2 2 t 2 1 d t = 1 2 2 t 2 4 2 t 2 1 d t = 1 2 [ 2 t 2 1 2 t 2 1 d t 3 2 t 2 1 d t ] I = 1 2 t 1 2 × 3 2 2 log | 2 t 1 2 t + 1 | + c = 1 2 cos x 3 4 2 log | 2 cos x 1 2 cos x + 1 | + c P = 1 2  and  Q = 3 4 2

8. ⇒  (MHT CET 2021 20th September Evening Shift )

2 x 2 1 x 4 x 2 20 d x =

A. 1 5 log | x + 5 x 5 | + tan 1 ( x 2 ) + c

B. 1 2 5 log | x + 5 x 5 | + tan 1 ( x 2 ) + c

C. 1 2 5 log | x 5 x + 5 | + 1 2 tan 1 ( x 2 ) + c

D. 1 2 log | x 5 x + 5 | + 1 2 tan 1 ( x 2 ) + c

Correct Option is (C)

Let I = 2 x 2 1 x 4 x 2 20 d x

If x 2 = t , then 2 x 2 1 x 4 x 2 20 = 2 t 1 t 2 t 20

Let 2 t 1 ( t 5 ) ( t + 4 ) = A ( t 5 ) + B ( t + 4 )

2 t 1 = ( t + 4 ) A + ( t 5 ) B 2 = A + B  and  1 = 4 A 5 B

Solving, we get B = 1 , A = 1

I = [ 1 x 2 5 + 1 x 2 + 4 ] d x = 1 2 5 log | x 5 x + 5 | + 1 2 tan 1 ( x 2 ) + c