Home Courses Contact About


1. ⇒  (MHT CET 2023 12th May Evening Shift)

1 cos 3 x sin 2 x d x =

A. 2 ( tan x + 1 5 ( tan x ) 5 2 ) + c , where c is a constant of integration.

B. ( tan x + 2 5 ( tan x ) 5 2 ) + c , where c is a constant of integration.

C. 1 2 ( tan x + 2 5 ( tan x ) 5 2 ) + c , where c is a constant of integration.

D. 2 ( tan x + 1 5 ( tan x ) 5 2 ) + c , where c is a constant of integration.

Correct Option is (A)

Let I = 1 cos 3 x sin 2 x d x = 1 2 sec 3 x sin x cos x d = 1 2 sec 4 x tan x d x

Let tan x = t sec 2 x = d t

I = 1 2 1 + t 2 t d t = 1 2 t 1 2 d t + 1 2 t 3 2 d t = 1 2 ( t 1 2 1 2 ) + 1 2 ( t 5 2 5 2 ) + c = 2 ( tan x + 1 5 ( tan x ) 5 2 ) + c

2. ⇒  (MHT CET 2023 12th May Evening Shift )

If 1 x 2 x 4   d x = A ( x ) ( 1 x 2 ) m + c for a suitable chosen integer m and a function A ( x ) , where c is a constant of integration, then ( A ( x ) ) m equals

A. 1 9 x 4

B. 1 3 x 3

C. 1 27 x 9

D. 1 27 x 6

Correct Option is (C)

 Let  I = 1 x 2 x 4 d x = x 1 x 2 1 x 4 d x = 1 x 2 1 x 3 d x

Let 1 x 2 1 = t

2 x 3   d x = dt 1 x 3   d x = dt 2 I = 1 2 t dt = 1 2 × ( t ) 3 2 3 2 + c = 1 3 × ( 1 x 2 1 ) 3 2 + c

= 1 3 × ( 1 x 2 ) 3 2 ( x 2 ) 3 2 + c = 1 3 × ( 1 x 2 ) 3 x 3

Comparing with A ( x ) ( 1 x 2 ) m + c , we get A ( x ) = 1 3 x 3 and m = 3

( A ( x ) ) m = ( 1 3 x 3 ) 3 = 1 27 x 9

3. ⇒  (MHT CET 2023 12th May Evening Shift )

( tan ( 1 x ) x ) 2 d x =

A. x tan x + c , where c is a constant of integration

B. 1 x tan ( 1 x ) + c , where c is a constant of integration.

C. 1 x + tan ( 1 x ) + c , where c is a constant of integration.

D. x + tan x + c , where c is a constant of integration.

Correct Option is (B)

 Let  I = ( tan ( 1 x ) x ) 2   d x  Let  1 x = t 1 x 2   d x = dt l = tan 2 t d t = ( 1 sec 2 t ) d t = t tan t + c = 1 x tan ( 1 x ) + c

4. ⇒  (MHT CET 2023 12th May Morning Shift )

cosec x d x cos 2 ( 1 + log tan x 2 ) =

A. tan ( 1 + log ( tan x 2 ) ) + c , where c is constant of integration

B. tan ( 1 + log ( tan x ) ) + c , where c is constant of integration

C. tan ( log ( tan x 2 ) ) + c , where c is constant of integration.

D. tan ( tan x 2 ) + c , where c is constant of integration.

Correct Option is (A)

Let I = cosec x d x cos 2 ( 1 + log tan x 2 ) d x

Let 1 + log ( tan x 2 ) = t

Differentiating both sides w.r.t. t , we get

1 tan x 2 sec 2 x 2 × 1 2   d x = dt

1 2 sin x 2 cos x 2   d x = dt

cosec x   d x = dt

I = 1 cos 2 t dt = sec 2 t d t = tan ( t ) + c = tan ( 1 + log ( tan x 2 ) ) + c

5. ⇒  (MHT CET 2023 12th May Morning Shift )

The integral sin 2 x cos 2 x ( sin 5 x + cos 3 x sin 2 x + sin 3 x cos 2 x + cos 5 x ) 2   d x is equal to

A. 1 3 ( 1 + tan 3 x ) + c , where c is a constant of integration.

B. 1 3 ( 1 + tan 3 x ) + c , where c is a constant of integration.

C. 1 1 + cot 3 x + c , where c is a constant of integration.

D. 1 1 + cos 3 x + c , where c is a constant of integration.

Correct Option is (B)

Let

I = sin 2 x cos 2 x ( sin 5 x + cos 3 x sin 2 x + sin 3 x cos 2 x + cos 5 x ) 2   d x = sin 2 x cos 2 x ( sin 5 x + sin 3 x cos 2 x + cos 3 x sin 2 x + cos 5 x ) 2   d x = sin 2 x cos 2 x [ sin 3 x ( sin 2 x + cos 2 x ) + cos 3 x ( sin 2 x + cos 2 x ) ] 2   d x = sin 2 x cos 2 x ( sin 3 x + cos 3 x ) 2   d x = sec 2 x tan 2 x ( 1 + tan 3 x ) 2   d x

....[Dividing numerator and denominator by cos 6 x ]

Let 1 + tan 3 x = t

Differentiating w.r.t. x , we get

3 tan 2 x sec 2 x   d x = dt tan 2 x sec 2 x   d x = 1 3   dt

I = 1 3 1 t 2 dt = 1 3 t + c = 1 3 ( 1 + tan 3 x ) + c