Home Courses Contact About


16. ⇒  (MHT CET 2023 9th May Evening Shift )

The magnitude of the projection of the vector 2 i ^ + j ^ + k ^ on the vector perpendicular to the plane containing the vectors i ^ + j ^ + k ^ and i ^ + 2 j ^ + 3 k ^ is

A. 2 6

B. 1 6

C. 5 6

D. 7 6

Correct answer option is (B)

The vector perpendicular to both vectors containing ( i ^ + j ^ + k ^ ) and ( i ^ + 2 j ^ + 3 k ^ ) is

= ( i ^ + j ^ + k ^ ) × ( i ^ + 2 j ^ + 3 k ^ ) = | i ^ j ^ k ^ 1 1 1 1 2 3 | = i ^ 2 j ^ + k ^

Therefore, the magnitude of the projection of vector ( 2 i ^ + j ^ + k ^ ) on ( i ^ 2 j ^ + k ^ ) is

= | ( 2 i ^ + j ^ + k ^ ) ( i ^ 2 j ^ + k ^ ) 1 2 + ( 2 ) 2 + ( 1 ) 2 | = | 2 2 + 1 6 | = 1 6

17. ⇒  (MHT CET 2023 9th May Morning Shift )

The distance of the point having position vector i ^ 2 j ^ 6 k ^ , from the straight line passing through the point ( 2 , 3 , 4 ) and parallel to the vector 6 i ^ + 3 j ^ 4 k ^ is units.

A. 340 61

B. 341 61

C. 341 61

D. 341 61

Correct answer option is (D)

Given equation of the line is

r = a + λ b r = 2 i ^ 3 j ^ 4 k ^ + λ ( 6 i ^ + 3 j ^ 4 k ^ )

To find: Its distance from point α ¯ = i ^ 2 j ^ 6 k ^ ,

 Required distance  = | α ¯ a | 2 [ ( α ¯ a ) b | b | ] 2  Here,  | α ¯ a | 2 = 6  and  [ ( α ¯ a ) b | b | ] 2 = 25 61  Required distance  = 341 61

18. ⇒  (MHT CET 2023 9th May Morning Shift )

The scalar product of the vector i ^ + j ^ + k ^ with a unit vector along the sum of the vectors 2 i ^ + 4 j ^ 5 k ^ and λ i ^ + 2 j ^ + 3 k ^ is equal to 1 , then value of λ is

A. 1

B. 2

C. 3

D. 4

Correct answer option is (A)

( 2 i ^ + 4 j ^ 5 k ^ ) + ( λ i ^ + 2 j ^ + 3 k ^ ) = ( 2 + λ ) i ^ + 6 j ^ 2 k ^

Unit vector along the above vector is

( 2 + λ ) i ^ + 6 j ^ 2 k ^ ( 2 + λ ) 2 + 6 2 + ( 2 ) 2 = ( 2 + λ ) i ^ + 6 j ^ 2 k ^ λ 2 + 4 λ + 44

Scalar product of ( i ^ + j ^ + k ^ ) with this unit vector is 1 .

( i ^ + j ^ + k ^ ) ( 2 + λ ) i ^ + 6 j ^ 2 k ^ λ 2 + 4 λ + 44 = 1 ( 2 + λ ) + 6 2 λ 2 + 4 λ + 44 = 1 λ 2 + 4 λ + 44 = λ + 6 λ 2 + 4 λ + 44 = ( λ + 6 ) 2 8 λ = 8 λ = 1

19. ⇒  (MHT CET 2021 21th September Evening Shift )

If a = i ^ + 2 j ^ 3 k ^ , b = 3 i ^ j ^ + 2 k ^ , c = i ^ + 3 j ^ + k ^ and a + λ b is perpendicular to c , then λ =

A. -2

B. 4

C. -4

D. 2

Correct answer option is (A)

a ¯ + λ b ¯ = ( i ^ + 2 j ^ 3 k ^ ) + λ ( 3 i ^ j ^ + 2 k ^ ) = ( 1 + 3 λ ) i ^ + ( 2 λ ) j ^ + ( 3 + 2 λ ) k ^

Since a + λ b is er to c , we write

( 1 ) ( 1 + 3 λ ) + ( 3 ) ( 2 λ ) + ( 1 ) ( 3 + 2 λ ) = 0 1 + 3 λ + 6 3 λ 3 + 2 λ = 0 λ = 2

20. ⇒  (MHT CET 2021 21th September Evening Shift )

If π 2 < θ < π and | a | = 5 , | b | = 13 , | a × b | = 25 , then the value of a . b is

A. -12

B. 60

C. -60

D. -13

Correct answer option is (C)

| a × b | = 25 | a | | b | sin θ = ( 5 ) ( 13 ) sin θ = 25 sin θ = 5 13 cos θ = 12 13 [ π 2 < θ π ] a b = | a | | b | cos θ = ( 5 ) ( 13 ) ( 12 13 ) = 60