Home Courses Contact About


21. ⇒  (MHT CET 2021 21th September Morning Shift )

If vectors a ¯ = 2 i ^ + 2 j ^ + 3 k ^ , b ¯ = i ^ + 2 j ^ + k ^ and c ¯ = 3 i ^ + j ^ + 2 k ^ are such that, a ¯ + λ b ¯ is perpendicular to c ¯ , then λ =

A. -14

B. 14

C. 2

D. -2

Correct answer option is (A)

From given data, we write

a ¯ + λ b ¯ = ( 2 λ ) i ^ + ( 2 + 2 λ ) j ^ + ( 3 + λ ) k ^ ..... (1)

Since (1) is er to c ¯ , we write

( 2 λ ) ( 3 ) + ( 2 + 2 λ ) ( 1 ) + ( 3 + λ ) ( 2 ) = 0 6 3 λ + 2 + 2 λ + 6 + 2 λ = 0 λ = 14

22. ⇒  (MHT CET 2021 21th September Morning Shift )

If | a ¯ | = 3 , | b ¯ | = 4 , | a ¯ b ¯ | = 5 , then | a ¯ + b ¯ | =

A. 9

B. 25

C. 5

D. 4

Correct answer option is (C)

| a + b | 2 = | a b | 2 + 4 a b ..... (1)

Now | a b | 2 = | a | 2 + | b | 2 2 a b

( 5 ) 2 = ( 3 ) 2 + ( 4 ) 2 2 a ¯ b ¯ a ¯ b ¯ = 0

Substituting in (1), we get

| a + b | 2 = | a b | 2 | a + b | = 5

23. ⇒  (MHT CET 2021 20th September Evening Shift )

a , b , c are vectors such that | a | = 5 , | b | = 4 , | c | = 3 and each is perpendicular to the sum of the other two, then | a + b + c | 2 =

A. 60

B. 12

C. 47

D. 50

Correct answer option is (D)

We have a ¯ ( b + c ) = 0 , b ( c + a ) = 0 and c ( a + b ) = 0

a b + a c = 0 ....... (1)

b c + b a = 0 ..... (2)

c a + c b = 0 ..... (3)

From (1), (2) and (3), we get

2 ( a b + b c + c a ) = 0  Now  | a + b + c | 2 = | a | 2 + | b | 2 + | c | 2 + 2 ( a b + b c + c a ) | a + b + c | 2 = ( 5 ) 2 + ( 4 ) 2 + ( 3 ) 2 + 2 ( 0 ) = 50

24. ⇒  (MHT CET 2021 20th September Evening Shift )

a , b and c are three vectors such that a + b + c = 0 and | a | = 3 , | b | = 5 , | c | = 7 , then the angle between a and b ¯ is

A. π 4

B. π 2

C. π 3

D. π 6

Correct answer option is (C)

a + b + c = 0 c = ( a + b ) and let angle between a and b be θ

| c ¯ | 2 = ( a ¯ + b ¯ ) 2 = | a | 2 + | b | 2 + 2 a b = | a | 2 + | b | 2 + 2 | a | | b | cos θ ( 7 ) 2 = ( 3 ) 2 + ( 5 ) 2 + 2 ( 3 ) ( 5 ) cos θ 49 = 9 + 25 + 30 cos θ cos θ = 15 30 = 1 2 θ = π 3

25. ⇒  (MHT CET 2021 20th September Morning Shift )

If e 1 , e 2 and e 1 + e 2 are unit vectors, then the angle between e 1 and e 2 is

A. 150

B. 120

C. 90

D. 135

Correct answer option is (B)

| e 1 + e 2 | 2 = | e 1 2 | + | e 2 2 | + 2 e 1 e 2 cos θ

Here | e 1 | = 1 , | e 2 | = 1 and | e 1 + e 2 | = 1

( 1 ) = ( 1 ) 2 + ( 1 ) 2 + 2 ( 1 ) ( 1 ) cos θ 1 2 = cos θ θ = 120