Home Courses Contact About


6. ⇒  (MHT CET 2021 21th September Evening Shift )

If 5 tan x tan x 2 d x = x + a log | sin x 2 cos x | + c , then a = (Where c is constant of integration)

A. 1

B. 2

C. 1

D. 2

Correct Option is (D)

Let I = 5 tan x tan x 2 d x

I = 5 sin x sin x 2 cos x d x

Here d d x ( sin x 2 cos x ) = cos x + 2 sin x

I = ( 2 sin x + 2 sin x + sin x ) + ( 2 cos x 2 cos x ) sin x 2 cos x d x = ( 2 sin x + cos x ) + ( 2 sin x + cos x ) + ( sin x 2 cos x ) d x sin x 2 cos x = 2 ( 2 sin x + cos x ) + ( sin x 2 cos x ) sin x 2 cos x d x = d x + 2 2 sin x + cos x sin x 2 cos x d x = x + 2 log | sin x 2 cos x | + c

From given data, a = 2

7. ⇒  (MHT CET 2021 21th September Morning Shift )

[ 1 + 2 tan x ( tan x + sec x ) ] 1 2 d x =

A. log [ sec x ( sec x tan x ) ] + c

B. log [ cosec x ( sec x + tan x ) ] + c

C. log [ sec x ( sec x + tan x ) ] + c

D. log [ sec x + tan x ] + c

Correct Option is (C)

Let I = [ 1 + 2 tan x ( tan x + sec x ) ] 1 / 2 d x = ( 1 + 2 tan 2 x + 2 tan x sec x ) 1 / 2 d x

= [ ( 1 + tan 2 x ) + tan 2 x + 2 sec x tan x ] 1 / 2 d x = ( sec 2 x + tan 2 x + 2 sec x tan x ) 1 / 2 d x = [ ( sec x + tan x ) 2 ] 1 / 2 d x = ( sec x + tan x ) d x = sec x d x + tan x d x = log sec x + tan x ) log | cos x | + c = log | sec x + tan x | | cos x | + c = log | sec x ( sec x + tan x ) | + c

8. ⇒  (MHT CET 2021 20th September Morning Shift )

tan 1 ( sec x + tan x ) d x =

A. π x 4 + x 2 4 + c

B. sin x cos x + c

C. π x 2 + x 2 2 + c

D. sin x + cos x + c

Correct Option is (A)

 Let I  = tan 1 ( sec x + tan x ) d x = tan 1 ( 1 + sin x cos x ) d x = tan 1 x [ ( cos x 2 + sin x 2 ) 2 ( cos x 2 + sin x 2 ) ( cos x 2 sin x 2 ) ] ] d x = tan 1 ( cos x 2 + sin x 2 cos x 2 sin x 2 ) d x = tan 1 ( 1 + tan x 2 1 tan x 2 ) d x = tan 1 [ tan ( π 4 + x 2 ) ] d x = ( π 4 + x 2 ) d x = π x 4 + x 2 4 + c

9. ⇒  (MHT CET 2021 20th September Morning Shift )

x + sin x 1 + cos x d x =

A. x tan ( x 2 ) + c

B. log ( x + sin x ) + c

C. cot ( x 2 ) + c

D. log ( 1 + cos x ) + c

Correct Option is (A)

Let = x + sin x 1 + cos x d x = x + sin x 2 cos 2 x 2 d x = x 2 cos 2 x 2 d x + 2 sin x 2 cos x 2 2 cos 2 x 2 d x = 1 2 x sec 2 x 2 d x + tan x 2 d x = 1 2 [ x tan x 2 ( 2 ) 2 tan x 2 d x ] 2 log | cos x 2 | + c = x tan x 2 + 2 log | cos x 2 | 2 log | cos x 2 | + c = x tan x 2 + c

10. ⇒  (MHT CET 2023 9th May Evening Shift )

If f ( x ) = x 5 x 5 and f ( 1 ) = 4 , then f ( x ) is

A. x 2 2 + 9 4 1 x 4 + 5 4

B. x 2 2 5 4 1 x 4 + 9 4

C. x 2 2 + 5 4 1 x 4 + 9 4

D. x 2 2 9 4 1 x 4 + 5 4

Correct Option is (C)

Given f ( x ) = x 5 x 5

Integrating both sides, we get

f ( x ) = ( x 5 x 5 ) d x f ( x ) = x 2 2 + 5 4 × 1 x 4 + c  But  f ( 1 ) = 4 1 2 + 5 4 + c = 4 c = 9 4 f ( x ) = x 2 2 + 5 4 1 x 4 + 9 4