Home Courses Contact About


16. ⇒  (MHT CET 2021 21th September Morning Shift )

If x 3 1 + x 2 d x = a ( 1 + x 2 ) 3 2 + b 1 + x 2 + c , then a + b = , (where c is constant of integration)

A. 2 3

B. 1 3

C. 1 3

D. 2 3

Correct Option is (A)

Let I = x 3 1 + x 2 d x = x 2 x 1 + x 2 d x

Put 1 + x 2 = t 1 + x 2 = t 2 2 x d x = 2 t d t

 Put  1 + x 2 = t 1 + x 2 = t 2 2 xdx = 2 td I = ( t 2 1 ) tdt t = ( t 2 1 ) d t = t 3 3 t + c = ( 1 + x 2 ) 3 2 3 1 + x 2 + c

Comparing with given data, a = 1 3 , b = 1 a + b = 2 3

17. ⇒  (MHT CET 2021 20th September Evening Shift )

sec 4 x tan 4 x d x = tan m x m + tan n x n + c (where c is constant of integration), then m + n =

A. 8

B. 12

C. 10

D. 16

Correct Option is (B)

Let I = sec 4 x tan 4 x d x

Put tan x = t sec 2 x d x = d t

I = sec 2 x ( sec 2 x ) ( tan 4 x ) d x

= ( 1 + t 2 ) ( t ) 4 d t = ( t 4 + t 6 ) d t = t 5 5 + t 7 7 + c = tan 5 x 5 + tan 7 x 7 + c

18. ⇒  (MHT CET 2021 20th September Morning Shift )

If 1 + x 2 1 + x 4 d x = 1 2 tan 1 [ f ( x ) 2 ] + c , then f ( x ) =

A. x + 1 x 2

B. x 1 x 2

C. x + 2 x

D. x 1 x

Correct Option is (D)

We have, 1 2 tan 1 [ f ( x ) 2 ] + c = 1 + x 2 1 + x 4 d x ...... (1)

Let I = 1 + x 2 1 + x 4 d x

Dividing numerator and denominator by x 2 , we get

I = ( 1 + 1 x 2 ) ( x 2 + 1 x 2 ) d x = ( 1 + 1 x 2 ) ( x 1 x ) 2 + 2 d x  Put  x 1 x = t ( 1 + 1 x 2 ) d x = d t I = d t t 2 + 2 = d t ( t ) 2 + ( 2 ) 2 = 1 2 tan 1 [ ( t ) 2 ] + c = 1 2 tan 1 [ ( x 1 x ) 2 ] + c . . . . . . ( 2 )

From (1) and (2), f ( x ) = x 1 x