Home Courses Contact About
☰ Topics:- Derivative of Composite Function
br>

1. ⇒  ( MHT CET 2023 12th May Evening Shift)

If tan y = x sin α 1 x cos α and d y   d x = m x 2 + 2 n x + 1 , then m 2 + n 2 is

A. 2

B. 3

C. 1

D. 4

Correct Option is (C)

tan y = x sin α 1 x cos α y = tan 1 ( x sin α 1 x cos α ) d y d x = 1 1 + ( x sin α 1 x cos α ) 2 d d x ( x sin α 1 x cos α ) = 1 1 2 x cos α + x 2 cos 2 α + x 2 sin 2 α ( 1 x cos α ) 2 × ( 1 x cos α ) sin α + ( x sin α ) cos α ( 1 x cos α ) 2 = sin α x sin α cos α + x sin α cos α 1 + 2 ( cos α ) x + x 2 = sin α x 2 + 2 ( cos α ) + 1 = m x 2 + 2 n x + 1 ... [Given] n = cos α  and  m = sin α m 2 + n 2 = 1

2. ⇒  (MHT CET 2023 12th May Morning Shift)

If x = 1 and x = 2 are extreme points of f ( x ) = α log x + β x 2 + x , α and β are constants, then the value of α 2 + 2 β is

A. 3

B. 3

C. 3 2

D. 5

Correct Option is (B)

According to the given condition,

f ( 1 ) = 0  and  f ( 2 ) = 0 f ( x ) = α log x + β x 2 + x f ( x ) = α x + 2 β x + 1 f ( 1 ) = 0 α + 2 β = 1 .... (i)  and  f ( 2 ) = 0 α + 8 β = 2 .... (ii)

From (i) and (ii), we get

β = 1 2  and  α = 2 α 2 + 2 β = 4 1 = 3

3. ⇒  (MHT CET 2023 11th May Evening Shift )

If f ( x ) = 3 x ; g ( x ) = 4 x , then f ( 0 ) g ( 0 ) 1 + f ( 0 ) g ( 0 ) is

A. log ( 3 4 ) 1 + ( log 3 ) ( log 4 )

B. log ( 3 4 ) 1 + log 12

C. log 12 1 + log 12

D. log ( 3 4 ) 1 log 12

Correct Option is (A)

f ( x ) = 3 x log 3 f ( 0 ) = log 3   g ( x ) = 4 x log 4 g ( 0 ) = log 4 f ( 0 ) g ( 0 ) 1 + f ( 0 ) g ( 0 ) = log 3 log 4 1 + ( log 3 ) ( log 4 ) = log ( 3 4 ) 1 + ( log 3 ) ( log 4 )

4. ⇒  (MHT CET 2023 11th May Evening Shift )

 For all real  x , the minimum value of  1 x + x 2 1 + x + x 2  is 

A. 0

B. 1

C. 1 3

D. 3

Correct Option is (C)

f ( x ) = 1 x + x 2 1 + x + x 2 f ( x ) = ( 1 + x + x 2 ) ( 1 + 2 x ) ( 1 x + x 2 ) ( 1 + 2 x ) ( 1 + x + x 2 ) 2 = ( 1 + 2 x x + 2 x 2 x 2 + 2 x 3 ) ( 1 + 2 x x 2 x 2 + x 2 + 2 x 3 ) ( 1 + x + x 2 ) 2 = 2 + 2 x 2 ( 1 + x + x 2 ) 2

If f ( x ) = 0 , then 2 + 2 x 2 ( 1 + x + x 2 ) 2 = 0 x 2 = 1 x = ± 1

f ( x ) at x = 1 is 1 3 and f ( x ) at x = 1 is 1.

Minimum value of f ( x ) is 1 3 .

5. ⇒  (MHT CET 2023 11th May Morning Shift )

If y = log sin x tan x , then ( d y   d x ) x = π 4 has the value

A. 4 log 2

B. 3 log 2

C. 4 log 2

D. 3 log 2

Correct Option is (C)

y = log tan x log sin x d y d x = ( log sin x ) ( 1 tan x ) sec 2 x ( log tan x ) ( 1 sin x ) ( cos x ) ( log sin x ) 2  At  x = π 4 ( d y d x ) x = π 4 = log ( 1 2 ) ( 1 1 ) ( 2 ) 2 ( log 1 ) ( 2 1 ) ( 1 2 ) [ log ( 1 2 ) ] 2 = 2 × 1 2 ( log 2 ) 0 1 4 ( log 2 ) 2 [ log 1 = 0 ] = 4 log 2