Home Courses Contact About


1. ⇒  (MHT CET 2023 10th May Evening Shift )

If x = 3 tan t and y = 3 sec t , then the value of d 2 y   d x 2 at t = π 4 is

A. 1 6 2

B. 1 6 2

C. 1 3 2

D. 3 2 2

Correct Option is (B)

x = 3 tan t d x dt = 3 sec 2 t y = 3 sec t d y dt = 3 sec t tan t  Now,  d y   d x = d y dt d x dt = 3 sect tan t 3 sec 2 t = sin t d 2 y dx = d dt ( sin t ) dt d x = cos t × 1 3 sec 2 t d 2 y   d x 2 = cos 3 t 3 ( d 2 y   d x 2 ) ( 1 π 4 ) = ( cos π 4 ) 3 3 = 1 6 2

2. ⇒  (MHT CET 2021 20th September Evening Shift )

If x = a ( t + sin t ) , y = a ( 1 cos t ) , then d y d x =

A. tan t 2

B. 1 2 tan t

C. 1 2 tan t

D. tan t 2

Correct Option is (A)

x = a ( t + sin t )  and  y = a ( 1 cos t ) d x d t = a ( 1 + cos t )  and  d y d t = a ( sin t ) d y d x = ( d y d t ) ( d x d t ) = a sin t a ( 1 + cos t ) = 2 sin t 2 cos t 2 2 cos 2 t 2 = tan t 2

3. ⇒  (MHT CET 2021 20th September Morning Shift )

If x = a cos θ , y = b sin θ , then [ d 2 y d x 2 ] θ = π 4 =

A. 2 ( a 2 b )

B. 2 ( a 2   b )

C. 2 2 ( b a 2 )

D. 2 2 ( b a 2 )

Correct Option is (C)

x = a cos θ , y = b sin θ d x d θ = a sin θ , d y d θ = b cos θ d y d x = b cos θ a sin θ = ( b a ) cot θ d 2 y d x 2 = d d x ( d y d x ) = d d θ ( d y d x ) d θ d x = d d θ [ ( b a ) cot θ ] × 1 ( d x d θ ) = ( b a ) ( cosec 2 θ ) a sin θ = ( b a ) × 1 a × 1 sin 3 θ ( d 2 y d x 2 ) θ = π 4 = ( b a 2 ) [ 1 ( sin π 4 ) 3 ] = ( b a 2 ) ( 2 ) 3 = 2 2 ( b a 2 )