Home Courses Contact About


1. ⇒  ( MHT CET 2023 12th May Evening Shift)

For x > 1 , if ( 2 x ) 2 y = 4 e 2 x 2 y , then ( 1 + log e 2 x ) 2 d y d x is equal to

A. x log e 2 x + log e 2 x

B. x log e 2 x log e 2 x

C. x log e 2 x + log e 2 x

D. x log e 2 x log e 2 2

Correct Option is (B)

( 2 x ) 2 y = 4 e 2 x 2 y

Taking ' log e ' on both sides, we get

2 y log e ( 2 x ) = log e 4 + ( 2 x 2 y ) log e e y log e ( 2 x ) = log e 2 + x y ..... (i)

Differentiating w.r.t. x , we get

[ log e 2 x ] d y   d x + 2 y 2 x = 0 + 1 d y   d x [ 1 + log e 2 x ] d y   d x = 1 y x .... (ii)  Now, (i)  y = log e 2 + x 1 + log e 2 x (  ii  ) ( 1 + log e 2 x ) d y   d x = x log e 2 x log e 2 x ( 1 + log e 2 x ) ( 1 + log e 2 x ) 2 d y   d x = x log e 2 x log e 2 x

2. ⇒  (MHT CET 2023 12th May Morning Shift )

y = ( 1 + x ) ( 1 + x 2 ) ( 1 + x 4 ) ( 1 + x 2 n ) , then the value of d y   d x at x = 0 is

A. 0

B. 1

C. 1

D. 2

Correct Option is (C)

y = ( 1 + x ) ( 1 + x 2 ) ( 1 + x 4 ) ( 1 + x 2 n ) .... (i)

Taking ' log ' on both sides, we get

log y = log ( 1 + x ) + log ( 1 + x 2 ) + log ( 1 + x 4 ) + + log ( 1 + x 2 n )

Differentiating w.r.t. x , we get

1 y d y   d x = 1 1 + x + 2 x 1 + x 2 + 4 x 3 1 + x 4 + + 2 n × x 2 n 1 1 + x 2 n ..... (ii)

At x = 0 , (i) y = 1

(ii) d y   d x | x = 0 = 1 + 0 + 0 + + 0 = 1

3. ⇒  (MHT CET 2023 11th May Evening Shift )

If y = [ ( x + 1 ) ( 2 x + 1 ) ( 3 x + 1 ) ( n x + 1 ) ] 3 2 , then d y   d x at x = 0 is

A. 3 n ( n + 1 ) 4

B. n ( n + 1 ) 2

C. 3 n ( n + 1 ) 2

D. n ( n + 1 ) 4

Correct Option is (A)

y = [ ( x + 1 ) ( 2 x + 1 ) ( 3 x + 1 ) ( n x + 1 ) ] 3 2

Taking ' log ' on both sides, we get

log y = 3 2 [ log ( x + 1 ) + log ( 2 x + 1 ) + log ( 3 x + 1 ) + + log ( n x + 1 ) ]

Differentiating w.r.t. x , we get

1 y d y   d x = 3 2 [ 1 x + 1 + 2 2 x + 1 + 3 3 x + 1 + + n n x + 1 ] d y   d x = 3 y 2 [ 1 x + 1 + 2 2 x + 1 + 3 3 x + 1 + + n n x + 1 ]

Now at x = 0 , y = [ ( 1 ) ( 1 ) ( 1 ) ( 1 ) n  times  ] 3 2 = 1

d y   d x | x = 0 = 3 ( 1 ) 2 [ 1 0 + 1 + 2 0 + 1 + 3 0 + 1 + + n 0 + 1 ] = 3 2 ( 1 + 2 + 3 + + n ) = 3 2 × n ( n + 1 ) 2 = 3 n ( n + 1 ) 4