Home Courses Contact About


1. ⇒  (MHT CET 2023 12th May Morning Shift )

The derivative of f ( tan x ) w.r.t. g ( sec x ) at x = π 4 where f ( 1 ) = 2 and g ( 2 ) = 4 is

A. 1 2

B. 2

C. 1

D. 0

Correct Option is (A)

 Let  p = f ( tan x )  and  q = g ( sec x ) dp d x = f ( tan x ) × sec 2 x  and  dq d x = g ( sec x ) × sec x tan x dp dx | x = π 4 = f ( 1 ) × 2 = 4 dq d x | x = π 4 = g ( 2 ) × 2 = 4 2  Required Derivative  = ( dp d x | x = π 4 dq d x | x = π 4 ) = 4 4 2 = 1 2

2. ⇒  (MHT CET 2023 11th May Morning Shift )

Derivative of tan 1 ( 1 + x 2 1 x 2 1 + x 2 + 1 x 2 ) w.r.t. cos 1 x 2 is

A. 1 2

B. 1

C. 1 2

D. 1

Correct Option is (A)

Let y = tan 1 ( 1 + x 2 1 x 2 1 + x 2 + 1 x 2 ) and z = cos 1 ( x 2 )

Put x 2 = cos 2 θ θ = 1 2 cos 1 x 2

y = tan 1 ( 1 + cos 2 θ 1 cos 2 θ 1 + cos 2 θ + 1 cos 2 θ ) y = tan 1 ( cos θ sin θ cos θ + sin θ ) y = tan 1 ( 1 tan θ 1 + tan θ ) y = tan 1 ( tan ( π 4 θ ) ) y = π 4 1 2 cos 1 x 2 y = π 4 1 2 z dy dz = 1 2

3. ⇒  (MHT CET 2023 9th May Morning Shift )

The rate of change of x 2 + 16 with respect to x x 1 at x = 5 is

A. 80 41

B. 80 41

C. 12 5

D. 12 5

Correct Option is (A)

y = x 2 + 16 d y   d x = 2 x 2 x 2 + 16 d y   d x = x x 2 + 16 ..... (i)  Let  z = x x 1 dz d x = ( x 1 ) x ( x 1 ) 2 dz d x = 1 ( x 1 ) 2 ..... (ii) ( d y dz ) x = 5 = x x 2 + 16 1 ( x 1 ) 2 = 5 25 + 16 × 16 = 80 41

4. ⇒  (MHT CET 2021 21th September Morning Shift )

The derivative of ( log x ) x with respect to log x is

A. ( log x ) x [ 1 log x log ( log x ) ]

B. ( log x ) x [ log x + 1 log ( log x ) ]

C. x ( log x ) x [ 1 log x + log ( log x ) ]

D. x ( log x ) x [ log x + 1 log ( log x ) ]

Correct Option is (C)

 Let  = ( log x ) x log u = x log [ log ( x ) ] 1 u d u d x = x log ( x ) × 1 x + log ( log x ) = log ( log x ) + 1 log x d u d x = ( log x ) x [ 1 log x + log ( log x ) ] .....(1)  Let  v = log x d v d x = 1 x .....(2) d u d v = ( log x ) x ( x ) [ 1 log x + log ( log x ) ] .....(From (1), (2))