Home Courses Contact About


1. ⇒  (MHT CET 2023 11th May Evening Shift )

The set of all points, where the derivative of the functions f ( x ) = x 1 + | x | exists, is

A. ( , )

B. [ 0 , )

C. ( , 0 ) ( 0 , )

D. ( 0 , )

Correct Option is (A)

f ( x ) can be written as

f ( x ) = { x 1 x , x 0 x 1 + x , x > 0 f ( x ) = { ( 1 x ) + x ( 1 + x ) 2 , x 0 ( 1 + x ) x ( 1 + x ) 2 , x > 0 f ( x ) = 1 ( 1 + x ) 2 x ( , )  Derivative of  f ( x )  exists  x ( , )

2. ⇒  (MHT CET 2023 11th May Morning Shift )

If y = log sin x tan x , then ( d y   d x ) x = π 4 has the value

A. 4 log 2

B. 3 log 2

C. 4 log 2

D. 3 log 2

Correct Option is (C)

y = log tan x log sin x d y d x = ( log sin x ) ( 1 tan x ) sec 2 x ( log tan x ) ( 1 sin x ) ( cos x ) ( log sin x ) 2  At  x = π 4 ( d y d x ) x = π 4 = log ( 1 2 ) ( 1 1 ) ( 2 ) 2 ( log 1 ) ( 2 1 ) ( 1 2 ) [ log ( 1 2 ) ] 2 = 2 × 1 2 ( log 2 ) 0 1 4 ( log 2 ) 2 [ log 1 = 0 ] = 4 log 2

3. ⇒  (MHT CET 2023 10th May Evening Shift )

Let f be a differentiable function such that f ( 1 ) = 2 and f ( x ) = f ( x ) , for all x R . If h ( x ) = f ( f ( x ) ) , then h ( 1 ) is equal to

A. 4 e 2

B. 4 e

C. 2 e

D. 2 e 2

Correct Option is (B)

Given: f ( x ) = f ( x ) for all x R

f ( x ) f ( x ) = 1

Integrating on both sides, we get

log | f ( x ) | = x + c f ( x ) = e x + c f ( x ) = e x e c f ( x ) = e x c 1  (i)  [ e c = c 1 ]

As f ( 1 ) = 2

c 1 e = 2 c 1 = 2 e

Equation (i) becomes

f ( x ) = e x 2 e

Now, h ( x ) = f ( f ( x ) )

h ( x ) = f ( f ( x ) ) × f ( x ) h ( 1 ) = f ( f ( 1 ) ) × f ( 1 ) h ( 1 ) = f ( 2 ) × f ( 1 ) h ( 1 ) = e 2 × 2 e × 2 h ( 1 ) = 4 e

4. ⇒  (MHT CET 2023 10th May Morning Shift )

If f ( x ) = e x ,   g ( x ) = sin 1 x and h ( x ) = f ( g ( x ) ) , then h ( x ) h ( x ) is

A. e sin 1 x

B. 1 1 x 2

C. sin 1 x

D. e sin 1 x 1 x 2

Correct Option is (B)

h ( x ) = f ( g ( x ) ) = f ( sin 1 x ) h ( x ) = e sin 1 x

Differentiating w.r.t. x , we get

h ( x ) = e sin 1 x d d x ( sin 1 x ) = e sin 1 x 1 1 x 2  Now,  h ( x ) h ( x ) = e sin 1 x 1 1 x 2 e sin 1 x = 1 1 x 2

5. ⇒  (MHT CET 2023 9th May Morning Shift )

If f ( 1 ) = 1 , f ( 1 ) = 3 , then the derivative of f ( f ( f ( x ) ) ) + ( f ( x ) ) 2 at x = 1 is

A. 12

B. 19

C. 23

D. 33

Correct Option is (D)

 Let  y = f ( f ( f ( x ) ) ) + ( f ( x ) ) 2 d y d x = f ( f ( f ( x ) ) ) f ( f ( x ) ) f ( x ) + 2 f ( x ) f ( x ) d y d x | x = 1 = f ( f ( f ( 1 ) ) ) f ( f ( 1 ) ) f ( 1 ) + 2 f ( 1 ) f ( 1 ) = 3 3 3 + 2 1 3 = 33