Home Courses Contact About


1. ⇒  (MHT CET 2023 12th May Evening Shift)

If f ( x ) = sin 1 ( 2 log x 1 + ( log x ) 2 ) , then f ( e ) is

A. 2 e

B. 1 2 e

C. e

D. 1 e

Correct Option is (D)

f ( x ) = sin 1 ( 2 log x 1 + ( log x ) 2 ) f ( x ) = 1 1 ( 2 log x 1 + ( log x ) 2 ) 2

= 1 + ( log x ) 2 1 + ( log x ) 4 + 2 ( log x ) 2 4 ( log x ) 2 × d d x ( 2 log x 1 + ( log x ) 2 ) = 1 + ( log x ) 2 1 2 ( log x ) 2 + ( log x ) 4 = 1 1 ( log x ) 2 × 2 + 2 ( log x ) 2 4 ( log x ) 2 x [ 1 + ( log x ) 2 ] = 1 1 ( log x ) 2 ] × 2 x ( 2 log x ) ( 2 log x x ) × 2 [ 1 ( log x ) 2 ] x [ 1 + ( log x ) 2 ] = 2 x [ 1 + ( log x ) 2 ] f ( e ) = 1 e

2. ⇒  (MHT CET 2023 10th May Evening Shift )

If y = tan 1 ( log ( e x 2 ) log ( e x 2 ) ) + tan 1 ( 4 + 2 log x 1 8 log x ) , then d y   d x is

A. 0

B. 1 2

C. 1 4

D. 1

Correct Option is (A)

y = tan 1 ( log ( e x 2 ) log ( e x 2 ) ) + tan 1 ( 4 + 2 log x 1 8 log x ) = tan 1 ( log e log x 2 log e + log x 2 ) + tan 1 ( 4 ) + tan 1 ( 2 log x ) = tan 1 ( 1 2 log x 1 + 2 log x ) + tan 1 ( 4 ) + tan 1 ( 2 log x ) = tan 1 ( 1 ) tan 1 ( 2 log x ) + tan 1 ( 4 ) + tan 1 ( 2 log x ) y = tan 1 ( 1 ) + tan 1 ( 4 ) d y d x = 0

3. ⇒  (MHT CET 2023 10th May Morning Shift )

If y = cos 1 ( a 2 x 4 + a 4 ) , then d y   d x is

A. 2 a 2 x x 4 + a 4

B. x log 2 x log 2 x

C. x log 2 x

D. log 2 x

Correct Option is (B)

( 2 x ) 2 y = 4 e 2 x 2 y

Taking log on both sides, we get

2 y log 2 x = log ( 4 e 2 x 2 y ) 2 y log 2 x = log 4 + log e 2 x 2 y 2 y log 2 x = log 4 + 2 x 2 y 2 y log 2 x + 2 y = log 4 + 2 x 2 ( y log 2 x + y ) = 2 log 2 + 2 x y log 2 x + y = log 2 + x y ( 1 + log 2 x ) = x + log 2 y = x + log 2 1 + log 2 x

Differentiating w.r.t. x , we get

d y d x = ( 1 + log 2 x ) ( 1 + 0 ) ( x + log 2 ) ( 1 2 x ) 2 ( 1 + log 2 x ) 2 d y d x = ( 1 + log 2 x ) 1 x ( x + log 2 ) ( 1 + log 2 x ) 2 ( 1 + log 2 x ) 2 d y d x = 1 + log 2 x 1 log 2 x ( 1 + log 2 x ) 2 d y d x = log 2 x log 2 x = x log 2 x log 2 x

4. ⇒  (MHT CET 2023 9th May Evening Shift )

If g is the inverse of f and f ( x ) = 1 1 + x 3 , then g ( x ) is

A. 1 1 + ( g ( x ) ) 3

B. 1 + ( g ( x ) ) 3

C. g ( x ) 1 + ( g ( x ) ) 3

D. ( g ( x ) ) 3 1 + ( g ( x ) ) 3

Correct Option is (B)

g ( x )  is inverse of function  f ( x )  i.e.,  g ( x ) = f 1 ( x ) f ( g ( x ) ) = x  differentiating w.r.t.  x , we get  f ( g ( x ) ) × g ( x ) = 1 g ( x ) = 1 f ( g ( x ) ) .... (i)  Now,  f ( x ) = 1 1 + x 3 ....[Given] f ( g ( x ) ) = 1 1 + ( g ( x ) ) 3  (ii)   From (ii) and  ( ii ) ,  we get  g ( x ) = 1 + ( g ( x ) ) 3

5. ⇒  (MHT CET 2021 21th September Evening Shift )

If y = tan 1 { a cos x b sin x b cos x + a sin x } , then d y d x

A. 1 1 + x 2

B. 1 1 x 2

C. 1

D. None of these

Correct Option is (C)

y = tan 1 { a cos x b sin x b cos x + a sin x }

Put a = r cos α , b = r sin α

y = tan 1 { r ( cos x cos α sin x sin α ) r ( sin α cos x + cos α sin x ) } = tan 1 [ cos ( x + α ) sin ( x + α ) ] = tan 1 [ cot ( x + α ) ] = tan 1 { tan [ π 2 ( x + α ) ] } = π 2 ( x + α ) dy dx = 0 ( 1 + 0 ) = 1