Home Courses Contact About


11. ⇒  (MHT CET 2023 10th May Evening Shift )

The value of d x x 2 ( x 4 + 1 ) 3 4 is

A. ( x 4 + 1 x 4 ) 1 4 + c , where c is a constant of integration.

B. ( x 4 + 1 ) 1 4 + c , where c is a constant of integration.

C. ( x 4 + 1 ) 1 4 + c , where c is a constant of integration.

D. ( x 4 + 1 x 4 ) 1 4 + c , where c is a constant of integration.

Correct Option is (D)

Let , I = 1 x 2 ( x 4 + 1 ) 3 4   d x = d x x 5 ( 1 + 1 x 4 ) 3 4

Put 1 + 1 x 4 = t 4 x 5   d x = dt

= 1 4 d t t 3 4 = 1 4 × 4 t 1 4 + c = t 1 4 + c = ( 1 + 1 x 4 ) 1 4 + c = ( x 4 + 1 x 4 ) 1 4 + c

12. ⇒  (MHT CET 2023 10th May Morning Shift )

If I = d x x 2 ( x 4 + 1 ) 3 4 , then I is

A. ( x 4 + 1 x ) 1 4 + c , where c is a constant of integration.

B. ( x 4 1 ) 1 4 x + c , where c is a constant of integration.

C. ( x 4 + 1 ) 1 4 x + c , where c is a constant of integration.

D. ( x 4 + 1 x ) 1 4 + c , where c is a constant of integration.

Correct Option is (C)

Let I = 1 x 2 ( x 4 + 1 ) 3 4   d x = d x x 5 ( 1 + 1 x 4 ) 3 4

Put 1 + 1 x 4 = t 4 x 5 d x = d t

I = 1 4 dt t 3 4 = 1 4 × 4 t 1 4 + c = t 1 4 + c = ( 1 + 1 x 4 ) 1 4 + c = ( x 4 + 1 ) 1 4 x + c

13. ⇒  (MHT CET 2023 9th May Morning Shift )

x + 1 x ( 1 + x e x ) 2   d x =

A. log | x e x 1 + x e x | + c , where c is a constant of integration.

B. log | x e x 1 + x e x | 1 1 + x e x + c , where c is a constant of integration.

C. log | 1 + x e x | + 1 1 + x e x + c , where c is constant of integration.

D. log | x e x 1 + x e x | + 1 1 + x e x + c , where c is constant of integration.

Correct Option is (D)

 Let  I = x + 1 x ( 1 + x e x ) 2   d x = e ( x + 1 ) e x x ( 1 + x e x ) 2   d x  Let  x e x = t ( x + 1 ) e x   d x = dt I = d t t ( 1 + t ) 2 = 1 + t t t ( 1 + t ) 2 d t = 1 d t t ( 1 + t ) 1 ( 1 + t ) 2 d t = 1 + t t t ( 1 + t ) 1 ( 1 + t ) 2 d t = 1 t d t 1 ( t + 1 ) d t 1 ( 1 + t ) 2 d t = log t dt ( t + 1 ) 1 ( 1 + t ) 2 d dt + c  Let  y = 1 + t d y = dt I = log t 1 y   d y 1 y 2   d y + c = log t log y + 1 y + c = log t log ( 1 + t ) + 1 ( 1 + t ) + c = log x e x log ( 1 + x e x ) + 1 ( 1 + x e x ) + c I = log | x e x 1 + x e x | + 1 1 + x e x + c

14. ⇒  (MHT CET 2023 9th May Morning Shift )

e tan 1 x 1 + x 2 [ ( sec 1 1 + x 2 ) 2 + cos 1 ( 1 x 2 1 + x 2 ) ] d x , x > 0 =

A. ( tan 1 x ) 2 e tan 1 x + c , where c is a constant of integration.

B. ( tan 1 x ) e tan 1 x + c , where c is a constant of integration.

C. ( tan 1 x ) e 2 tan 1 x + c , where c is a constant of integration.

D. ( tan 1 x ) 2 e 2 tan 1 x + c , where c is a constant of integration.

Correct Option is (A)

e tan 1 x 1 + x 2 [ ( sec 1 1 + x 2 ) 2 + cos 1 ( 1 x 2 1 + x 2 ) ] d x ,  Put  x = tan t d x = sec 2 t d t

I = e sen 1 ( tan t ) 1 + tan 2 t [ ( sec 1 1 + tan 2 t ) 2 + cos 1 ( 1 tan 2 t 1 + tan 2 t ) ] sec 2 t   d t = e t sec 2 t [ ( sec 1 ( sec t ) ) 2 + cos 1 ( cos 2 t ) ] sec 2 t d t = e t [ t 2 + 2 t ] d t = e t t 2 + c [ e x f ( x ) f ( x ) = e x f ( x ) + c ] = t 2 e t + c = ( tan 1 x ) 2 e tan 1 x + c

15. ⇒  (MHT CET 2021 21th September Evening Shift )

[ sin | log x | + cos | log x | ] d x =

A. sin | log x | + c

B. x cos | log x | + c

C. cos | log x | + c

D. x sin | log x | + c

Correct Option is (D)

Let I = [ sin | log x | + cos | log x | ] d x

Put log x = t 1 x d x = d t d x = e t d t

I = ( sin + cos t ) e t d t = e t ( sin t + cos t ) d t = e t sin t + c = x sin | log x | + c