Home Courses Contact About


6. ⇒  (MHT CET 2023 9th May Morning Shift )

The derivative of f ( sec x ) with respect to g ( tan x ) at x = π 4 , where f ( 2 ) = 4 and g ( 1 ) = 2 , is

A. 2

B. 1 2

C. 2

D. 1 2 2

Correct Option is (C)

 Let  y = f ( sec x )  and  z = g ( tan x ) d y   d x = f ( sec x ) sec x tan x d z d x = g ( tan x ) sec 2 x  Now,  d y dz = f ( sec x ) sec x tan x   g ( tan x ) sec 2 x d y d z = f ( sec x ) tan x g ( tan x ) sec x d y dz | x = π 4 = f ( sec π 4 ) tan π 4   g ( tan π 4 ) sec π 4 = f ( 2 ) ( 1 ) g ( 1 ) 2 4 × 1 2 2 = 2

7. ⇒  (MHT CET 2021 20th September Morning Shift )

If y = log tan ( x 2 ) + sin 1 ( cos x ) , then d y d x =

A. cosec x

B. sin x + 1

C. x

D. cosec x 1

Correct Option is (D)

Given the equation :

y = log tan ( x 2 ) + sin 1 ( cos x )

The goal is to find d y d x .

Step 1 : Convert sin 1 ( cos x ) using the complementary angle identity

From trigonometric identities, we know :

sin 1 ( cos x ) = π 2 x

This is because sin ( π 2 x ) = cos ( x ) .

So the equation becomes :

y = log tan ( x 2 ) + π 2 x

Step 2 : Differentiate term by term

For the term log tan ( x 2 ) :

Using the chain rule and properties of logarithmic differentiation :

d d x log tan ( x 2 ) = 1 tan ( x 2 ) × sec 2 ( x 2 ) × 1 2

Where :

  • 1 tan ( x 2 ) is the derivative of the logarithmic function.
  • sec 2 ( x 2 ) is the derivative of tan ( x 2 ) .
  • 1 2 is the derivative of x 2 .

For the term π 2 x :

The derivative is simply -1, since the derivative of a constant is 0 and the derivative of x is 1.

Combining the two terms, we get :

d y d x = 1 tan ( x 2 ) × sec 2 ( x 2 ) × 1 2 1

Step 3 : Simplify

1 tan ( x 2 ) can be written as cos x 2 sin x 2 .

And sec 2 ( x 2 ) is 1 cos 2 x 2 .

Multiplying these terms :

d y d x = cos x 2 sin x 2 cos 2 x 2 × 1 2 1

Step 4 : Use trigonometric identities to further simplify

Using the identity sin 2 θ = 2 sin θ cos θ :

sin x = 2 sin x 2 cos x 2

The expression can then be simplified as :

d y d x = 1 2 sin x 2 cos x 2 1

Substitute the value from the double angle identity :

d y d x = 1 sin x 1

Which is :

d y d x = cosec x 1

Thus, the solution for d y d x is cosec x 1 .

8. ⇒  (MHT CET 2021 20th September Morning Shift )

If h ( x ) = 4 f ( x ) + 3 g ( x ) , f ( 1 ) = 4 , g ( 1 ) = 3 , f ( 1 ) = 3 , g ( 1 ) = 4 , then h ( 1 ) =

A. 5 12

B. 12 5

C. 5 12

D. 12 7

Correct Option is (B)

h ( x ) = 4 f ( x ) + 3 g ( x ) ..... (1)

h ( 1 ) = 4 ( 4 ) + 3 ( 3 ) = 5 .... (2)

Squaring (1), we get

[ h ( x ) ] 2 = 4 f ( x ) + 3   g ( x )

Differentiating w.r.t. x , we get 2   h ( x ) h ( x ) = 4 f ( x ) + 3   g ( x )

At x = 1 , we get

2 ( 5 ) h ( 1 ) = 4 ( 3 ) + 3 ( 4 ) = 24 ... [From (2) and data given]

h ( 1 ) = 24 10 = 12 5